热导率
亚稳态
材料科学
声子
硅
格子(音乐)
凝聚态物理
玻尔兹曼方程
物理
热力学
量子力学
光电子学
声学
复合材料
作者
Chunfeng Cui,Yuwen Zhang,Tao Ouyang,Mingxing Chen,Chao Tang,Qiao Chen,Chaoyu He,Jin Li,Jianxin Zhong
出处
期刊:Physical Review Materials
[American Physical Society]
日期:2023-03-29
卷期号:7 (3)
被引量:12
标识
DOI:10.1103/physrevmaterials.7.033803
摘要
In this paper, we propose a convenient strategy to accelerate the evaluation of lattice thermal conductivity through combining phonon Boltzmann transport equation (PBTE) and on-the-fly machine learning potential (FMLP). The thermal conductivity of diamond silicon ($d\text{\ensuremath{-}}\mathrm{Si}$) is evaluated firstly by density functional theory (DFT), FMLP, and empirical potential with PBTE, respectively. The results demonstrate the proposed strategy integrates the prediction accuracy of DFT and computational speed of empirical potential, breaking the dilemma of traditional thermal conductivity assessment schemes. Based on this, the efficient strategy is applied to predict thermal conductivity of 102 low-energy metastable silicon crystals with energies between $d\text{\ensuremath{-}}\mathrm{Si}$ and experimentally ${\mathrm{Si}}_{24}$. Among them, the $Cmcm\text{\ensuremath{-}}{\mathrm{Si}}_{16}, P6/mmm\text{\ensuremath{-}}{\mathrm{Si}}_{36}$-2, $Pnma\text{\ensuremath{-}}{\mathrm{Si}}_{32}$-2 are predicted to host lowest lattice thermal conductivity in $xx$ (8.213 ${\mathrm{Wm}}^{\ensuremath{-}1}{\mathrm{K}}^{\ensuremath{-}1}$), $yy$ (10.917 ${\mathrm{Wm}}^{\ensuremath{-}1}{\mathrm{K}}^{\ensuremath{-}1}$), and $zz$ (11.807 ${\mathrm{Wm}}^{\ensuremath{-}1}{\mathrm{K}}^{\ensuremath{-}1}$) directions, respectively. Such low lattice thermal conductivity benefits from the combined effect of low phonon group velocity and intense phonon scattering caused by distorted $s{p}^{3}$ hybrid states in these metastable silicon crystals. The findings presented in this work provide new candidates and insights of silicon-based materials with ultra-low thermal conductivity, which will greatly expand the applications in thermoelectric and thermal insulation fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI