Hydroxamic acid derivatives as selective HDAC3 inhibitors: computer-aided drug design strategies

药效团 虚拟筛选 生物信息学 对接(动物) 计算生物学 组蛋白脱乙酰基酶 化学 分子动力学 立体化学 药理学 计算化学 生物化学 组蛋白 生物 医学 基因 护理部
作者
Preeti Patel,Sushant K. Shrivastava,Piyoosh Sharma,Balak Das Kurmi,Ekta Shirbhate,Harish Rajak
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:42 (1): 362-383 被引量:7
标识
DOI:10.1080/07391102.2023.2192804
摘要

Histone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies. The ten pharmacophore hypotheses were established, and their reliability was validated by different ROC (receiving operator curve) analysis. Among them, the best model (Hypothesis 9 or RRRA) was employed for searching SCHEMBL, ZINC and MolPort database to screen out hit molecules as selective HDAC3 inhibitors, followed by different docking stages. MD simulation (50 ns) and MMGBSA study were performed to study the stability of ligand binding modes and with the help of trajectory analysis, to calculate the ligand-receptor complex RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation) and H-bond distance, etc. Finally, in-silico toxicity studies were performed on top screened molecules and compared with reference drug SAHA and established structure-activity relationship (SAR). The results indicated that compound 31, with high inhibitory potency and less toxicity (probability value 0.418), is suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zion完成签到,获得积分0
刚刚
诸葛翼德发布了新的文献求助10
2秒前
2秒前
zero桥完成签到,获得积分10
2秒前
3秒前
3秒前
神经发布了新的文献求助10
5秒前
谭阿面完成签到,获得积分10
5秒前
科研通AI2S应助cqnuly采纳,获得10
5秒前
小二郎应助健康的绿竹采纳,获得10
5秒前
5秒前
禹涔发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得30
8秒前
萧水白应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
cocolu应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
9秒前
tomorrow505应助科研通管家采纳,获得10
9秒前
cocolu应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
maox1aoxin应助科研通管家采纳,获得50
9秒前
9秒前
9秒前
儒雅冰岚发布了新的文献求助10
11秒前
11秒前
酷炫小伙完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
jjiffg发布了新的文献求助10
12秒前
13秒前
在水一方应助魔幻的盼秋采纳,获得10
13秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334795
求助须知:如何正确求助?哪些是违规求助? 2964054
关于积分的说明 8612143
捐赠科研通 2642902
什么是DOI,文献DOI怎么找? 1447045
科研通“疑难数据库(出版商)”最低求助积分说明 670503
邀请新用户注册赠送积分活动 658745