Underwater fish mass estimation using pattern matching based on binocular system

水下 水产养殖 稳健性(进化) 人工智能 数学 计算机视觉 计算机科学 生物 渔业 地质学 生物化学 基因 海洋学
作者
Chuang Shi,Ran Zhao,Chenglei Liu,Bingbing Li
出处
期刊:Aquacultural Engineering [Elsevier BV]
卷期号:99: 102285-102285 被引量:3
标识
DOI:10.1016/j.aquaeng.2022.102285
摘要

Fish mass is the main information for judging growth status, regulating water quality environment, and precision feeding and grading in the process of intelligent aquaculture management activities. However, the occlusion, bending, and poor imaging angle of fish body image are still serious challenges for underwater fully automatic mass measurement. The aim of this study was to develop underwater non-contact method to automatically estimate the free-swimming fish mass based on binocular stereo vision technology. The fish body images were automatically selected and obtained by using pattern recognition method based on LabVIEW development platform during the experimental period. All the fish samples were divided into three groups according to mass (200–500 g, 500–800 g, and 800–1200 g), and then subdivided into three groups by imaging angle (orthogonal angles, greater than 45°, and less than 45°). The experiment indicated that the fish mass could be estimated using fish body area with a high coefficient of determination (R2) based on linear model. The mean relative errors between estimated and measured value were 3.37% (orthogonal angles), 4.95% (greater than 45° angles), and 16.59% (less than 45° angles). Significant difference was found in less than 45° group with p < 0.01. These findings showed that the approach put forward in this research could realize fully automatic mass estimation for underwater free-swimming fish and effectively improve the estimation robustness and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miki完成签到,获得积分10
刚刚
刚刚
李四发布了新的文献求助10
2秒前
3秒前
诸葛不亮完成签到,获得积分10
3秒前
XXXp发布了新的文献求助10
3秒前
4秒前
魏某某发布了新的文献求助10
5秒前
6秒前
星辉斑斓完成签到,获得积分10
6秒前
CodeCraft应助雄鹰采纳,获得10
6秒前
这两天天气咋样完成签到,获得积分10
7秒前
7秒前
完美世界应助yuxx采纳,获得10
9秒前
qiao发布了新的文献求助10
9秒前
ohooo发布了新的文献求助10
9秒前
butaishao发布了新的文献求助10
10秒前
果果发布了新的文献求助10
10秒前
魏某某完成签到,获得积分10
10秒前
tranphucthinh完成签到,获得积分0
12秒前
独特的绿蝶完成签到,获得积分10
13秒前
15秒前
无奈曼云发布了新的文献求助10
16秒前
chigga发布了新的文献求助10
18秒前
彭于晏应助Tony采纳,获得10
18秒前
姜水完成签到,获得积分10
18秒前
19秒前
19秒前
王九八发布了新的文献求助20
20秒前
小马甲应助辉辉采纳,获得10
21秒前
桐桐应助chigga采纳,获得10
21秒前
Aaron发布了新的文献求助10
23秒前
23秒前
xhjh03发布了新的文献求助10
24秒前
善学以致用应助Alina采纳,获得10
25秒前
25秒前
27秒前
嘚嘤丁完成签到 ,获得积分10
27秒前
风吹草动玉米粒完成签到,获得积分10
29秒前
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371