生成语法
启发式
计算机科学
生成设计
过程(计算)
钥匙(锁)
人工智能
代表(政治)
集合(抽象数据类型)
生成模型
机器学习
计算
算法
工程类
程序设计语言
公制(单位)
运营管理
计算机安全
政治
政治学
操作系统
法学
作者
Tahar Nabil,Jean‐Marc Commenge,Thibaut Neveux
出处
期刊:Computer-aided chemical engineering
日期:2022-01-01
卷期号:: 289-294
被引量:3
标识
DOI:10.1016/b978-0-323-85159-6.50048-8
摘要
In process synthesis, generative approaches are algorithmic strategies able to produce new structures, which differs from conventional optimization techniques consisting in choosing among a predetermined set of structures (e.g. heuristics and superstructure optimization). The development of these approaches has only intensified recently with the rise of both evolutionary computation and machine learning techniques. This paper aims at introducing some recent experiments, categorized into reward-driven and data-driven algorithms; and discussing key aspects of the generative steps such as: required initial database, process data representation, generative model architecture, reward design, optimization strategy and post-processing for the engineer.
科研通智能强力驱动
Strongly Powered by AbleSci AI