亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm

计算流体力学 人工神经网络 固体氧化物燃料电池 遗传算法 支持向量机 计算机科学 功率密度 功率(物理) 工程类 算法 人工智能 机器学习 电极 化学 量子力学 阳极 物理 航空航天工程 物理化学
作者
Guoping Xu,Zeting Yu,Lei Xia,Changjiang Wang,Shaobo Ji
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:268: 116026-116026 被引量:20
标识
DOI:10.1016/j.enconman.2022.116026
摘要

Solid oxide fuel cell (SOFC) is the electrochemical device that directly convert the chemical energy of fuels into electrical energy, which are considered one of the promising methods for achieving high power generation efficiency. However, the commercialization of SOFC encounters the challenge due to its high manufacturing and operating cost. This study aims to present a framework and methodology for improving SOFC’ performance assisted by computational fluid dynamic (CFD) modeling, artificial neural network (ANN), and genetic algorithm (GA). Firstly, a three-dimensional computational fluid dynamic (CFD) model, referring to three types of parameters, e.g. geometry parameters, microscopic parameters and operating conditions, was developed and then the databases were obtained. Then 19 widely used intelligence algorithms, e.g. Artificial Neural Network (ANN), Boltzmann Machines (BMs), Support Vector Machines (SVMs), etc., were employed to train the databases. Next, the developed ANN surrogate model was used to replace the complicated and time-consuming CFD model and to predict SOFC’s performance and optimize the power density output of SOFC. Finally, the system optimization was performed by using genetic algorithm (GA) to maximize the power density. The results showed that artificial neural network (ANN) achieved the best accuracy (R2 = 0.99889) in terms of predictions of SOFC performance. Besides, it was found that the optimal SOFC had a better gas concentration distribution which can enhance the mass transfer in the electrode, and thus the SOFC performance was improved. The combination of CFD modeling, ANN and GA can provide a promising solution for the performance prediction, improvement and optimization of SOFC accurately and rapidly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
6秒前
搜集达人应助车哥爱学习采纳,获得10
14秒前
19秒前
所所应助CC采纳,获得30
19秒前
22秒前
23秒前
Wenqi发布了新的文献求助10
25秒前
31秒前
Wenqi完成签到,获得积分10
31秒前
balko发布了新的文献求助10
35秒前
43秒前
CC发布了新的文献求助30
49秒前
50秒前
CipherSage应助马文玉采纳,获得10
51秒前
light发布了新的文献求助10
54秒前
蕴蝶完成签到,获得积分10
54秒前
balko完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Eternity完成签到,获得积分10
1分钟前
kao2oak完成签到 ,获得积分10
1分钟前
温暖飞双完成签到,获得积分20
1分钟前
VDC应助温暖飞双采纳,获得30
1分钟前
魔幻友菱完成签到 ,获得积分10
2分钟前
CipherSage应助ceeray23采纳,获得20
2分钟前
科研通AI6应助CC采纳,获得30
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Medhanie发布了新的文献求助10
3分钟前
无花果应助ceeray23采纳,获得20
3分钟前
马文玉发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622275
求助须知:如何正确求助?哪些是违规求助? 4707334
关于积分的说明 14939084
捐赠科研通 4770272
什么是DOI,文献DOI怎么找? 2552277
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475085