亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm

计算流体力学 人工神经网络 固体氧化物燃料电池 遗传算法 支持向量机 计算机科学 功率密度 功率(物理) 工程类 算法 人工智能 机器学习 电极 化学 量子力学 阳极 物理 航空航天工程 物理化学
作者
Guoping Xu,Zeting Yu,Lei Xia,Changjiang Wang,Shaobo Ji
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:268: 116026-116026 被引量:20
标识
DOI:10.1016/j.enconman.2022.116026
摘要

Solid oxide fuel cell (SOFC) is the electrochemical device that directly convert the chemical energy of fuels into electrical energy, which are considered one of the promising methods for achieving high power generation efficiency. However, the commercialization of SOFC encounters the challenge due to its high manufacturing and operating cost. This study aims to present a framework and methodology for improving SOFC’ performance assisted by computational fluid dynamic (CFD) modeling, artificial neural network (ANN), and genetic algorithm (GA). Firstly, a three-dimensional computational fluid dynamic (CFD) model, referring to three types of parameters, e.g. geometry parameters, microscopic parameters and operating conditions, was developed and then the databases were obtained. Then 19 widely used intelligence algorithms, e.g. Artificial Neural Network (ANN), Boltzmann Machines (BMs), Support Vector Machines (SVMs), etc., were employed to train the databases. Next, the developed ANN surrogate model was used to replace the complicated and time-consuming CFD model and to predict SOFC’s performance and optimize the power density output of SOFC. Finally, the system optimization was performed by using genetic algorithm (GA) to maximize the power density. The results showed that artificial neural network (ANN) achieved the best accuracy (R2 = 0.99889) in terms of predictions of SOFC performance. Besides, it was found that the optimal SOFC had a better gas concentration distribution which can enhance the mass transfer in the electrode, and thus the SOFC performance was improved. The combination of CFD modeling, ANN and GA can provide a promising solution for the performance prediction, improvement and optimization of SOFC accurately and rapidly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
伯赏元彤发布了新的文献求助10
8秒前
9秒前
丘比特应助ZXH采纳,获得10
10秒前
明亮的卿发布了新的文献求助20
15秒前
16秒前
Orange应助伯赏元彤采纳,获得10
17秒前
英姑应助明亮的卿采纳,获得10
22秒前
ZXH发布了新的文献求助10
22秒前
zxq1996完成签到 ,获得积分10
23秒前
25秒前
笨笨完成签到,获得积分10
25秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
CodeCraft应助科研通管家采纳,获得10
29秒前
31秒前
Wei发布了新的文献求助10
32秒前
32秒前
48秒前
脑洞疼应助lf采纳,获得10
48秒前
53秒前
54秒前
56秒前
lf发布了新的文献求助10
59秒前
1分钟前
伯赏元彤发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
平淡道天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
伯赏元彤完成签到,获得积分10
1分钟前
自由觅松完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Perion完成签到 ,获得积分10
1分钟前
自由觅松发布了新的文献求助20
1分钟前
1分钟前
李健应助为神指路采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520735
关于积分的说明 11204640
捐赠科研通 3257493
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613