Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm

计算流体力学 人工神经网络 固体氧化物燃料电池 遗传算法 支持向量机 计算机科学 功率密度 功率(物理) 工程类 算法 人工智能 机器学习 电极 化学 量子力学 阳极 物理 航空航天工程 物理化学
作者
Guoping Xu,Zeting Yu,Lei Xia,Changjiang Wang,Shaobo Ji
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:268: 116026-116026 被引量:20
标识
DOI:10.1016/j.enconman.2022.116026
摘要

Solid oxide fuel cell (SOFC) is the electrochemical device that directly convert the chemical energy of fuels into electrical energy, which are considered one of the promising methods for achieving high power generation efficiency. However, the commercialization of SOFC encounters the challenge due to its high manufacturing and operating cost. This study aims to present a framework and methodology for improving SOFC’ performance assisted by computational fluid dynamic (CFD) modeling, artificial neural network (ANN), and genetic algorithm (GA). Firstly, a three-dimensional computational fluid dynamic (CFD) model, referring to three types of parameters, e.g. geometry parameters, microscopic parameters and operating conditions, was developed and then the databases were obtained. Then 19 widely used intelligence algorithms, e.g. Artificial Neural Network (ANN), Boltzmann Machines (BMs), Support Vector Machines (SVMs), etc., were employed to train the databases. Next, the developed ANN surrogate model was used to replace the complicated and time-consuming CFD model and to predict SOFC’s performance and optimize the power density output of SOFC. Finally, the system optimization was performed by using genetic algorithm (GA) to maximize the power density. The results showed that artificial neural network (ANN) achieved the best accuracy (R2 = 0.99889) in terms of predictions of SOFC performance. Besides, it was found that the optimal SOFC had a better gas concentration distribution which can enhance the mass transfer in the electrode, and thus the SOFC performance was improved. The combination of CFD modeling, ANN and GA can provide a promising solution for the performance prediction, improvement and optimization of SOFC accurately and rapidly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨哈哈发布了新的文献求助10
刚刚
李思发布了新的文献求助10
刚刚
ding应助xkh采纳,获得10
1秒前
1秒前
zhfliang发布了新的文献求助10
1秒前
朴素念波发布了新的文献求助10
3秒前
Jieun完成签到,获得积分10
3秒前
4秒前
FashionBoy应助朝朝采纳,获得10
5秒前
英姑应助冷酷愚志采纳,获得10
6秒前
Jieun发布了新的文献求助10
6秒前
科目三应助合适凡采纳,获得10
6秒前
Lucas应助einuo采纳,获得10
7秒前
8秒前
8秒前
Mottri发布了新的文献求助10
10秒前
11秒前
小中完成签到,获得积分10
12秒前
黑暗精灵完成签到,获得积分10
12秒前
云澈发布了新的文献求助10
12秒前
朴素羊发布了新的文献求助10
13秒前
Mottri完成签到 ,获得积分10
14秒前
无心的傲易完成签到,获得积分10
15秒前
李健的小迷弟应助Gigi采纳,获得10
16秒前
16秒前
17秒前
18秒前
朝朝发布了新的文献求助10
20秒前
虚心的海雪完成签到 ,获得积分10
20秒前
兴奋孤风给兴奋孤风的求助进行了留言
20秒前
上官若男应助zhangyannini采纳,获得10
20秒前
云澈完成签到,获得积分10
21秒前
自由从筠完成签到 ,获得积分10
24秒前
Ava应助杨哈哈采纳,获得10
25秒前
25秒前
26秒前
YYY发布了新的文献求助10
26秒前
26秒前
Meilin发布了新的文献求助10
28秒前
Ollesia发布了新的文献求助10
29秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219300
求助须知:如何正确求助?哪些是违规求助? 2868223
关于积分的说明 8159815
捐赠科研通 2535246
什么是DOI,文献DOI怎么找? 1367634
科研通“疑难数据库(出版商)”最低求助积分说明 645072
邀请新用户注册赠送积分活动 618298