Performance improvement of solid oxide fuel cells by combining three-dimensional CFD modeling, artificial neural network and genetic algorithm

计算流体力学 人工神经网络 固体氧化物燃料电池 遗传算法 支持向量机 计算机科学 功率密度 功率(物理) 工程类 算法 人工智能 机器学习 电极 化学 量子力学 阳极 物理 航空航天工程 物理化学
作者
Guoping Xu,Zeting Yu,Lei Xia,Changjiang Wang,Shaobo Ji
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:268: 116026-116026 被引量:20
标识
DOI:10.1016/j.enconman.2022.116026
摘要

Solid oxide fuel cell (SOFC) is the electrochemical device that directly convert the chemical energy of fuels into electrical energy, which are considered one of the promising methods for achieving high power generation efficiency. However, the commercialization of SOFC encounters the challenge due to its high manufacturing and operating cost. This study aims to present a framework and methodology for improving SOFC’ performance assisted by computational fluid dynamic (CFD) modeling, artificial neural network (ANN), and genetic algorithm (GA). Firstly, a three-dimensional computational fluid dynamic (CFD) model, referring to three types of parameters, e.g. geometry parameters, microscopic parameters and operating conditions, was developed and then the databases were obtained. Then 19 widely used intelligence algorithms, e.g. Artificial Neural Network (ANN), Boltzmann Machines (BMs), Support Vector Machines (SVMs), etc., were employed to train the databases. Next, the developed ANN surrogate model was used to replace the complicated and time-consuming CFD model and to predict SOFC’s performance and optimize the power density output of SOFC. Finally, the system optimization was performed by using genetic algorithm (GA) to maximize the power density. The results showed that artificial neural network (ANN) achieved the best accuracy (R2 = 0.99889) in terms of predictions of SOFC performance. Besides, it was found that the optimal SOFC had a better gas concentration distribution which can enhance the mass transfer in the electrode, and thus the SOFC performance was improved. The combination of CFD modeling, ANN and GA can provide a promising solution for the performance prediction, improvement and optimization of SOFC accurately and rapidly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lengbo发布了新的文献求助10
1秒前
1秒前
赘婿应助南溪采纳,获得10
1秒前
田様应助宝宝采纳,获得10
2秒前
3秒前
3秒前
Hello应助JasonSun采纳,获得10
4秒前
莎莎完成签到 ,获得积分10
5秒前
LL来了发布了新的文献求助10
5秒前
木南楠a完成签到,获得积分10
5秒前
包包大人完成签到 ,获得积分10
6秒前
林声发布了新的文献求助20
6秒前
7秒前
Lengbo完成签到,获得积分10
7秒前
花有花期完成签到,获得积分10
8秒前
Cactus发布了新的文献求助10
8秒前
9秒前
田様应助11采纳,获得10
9秒前
Debrolie完成签到 ,获得积分10
9秒前
火星上小土豆完成签到 ,获得积分10
10秒前
10秒前
自然的书萱完成签到,获得积分10
11秒前
华哥完成签到,获得积分10
11秒前
学术渣渣完成签到,获得积分10
11秒前
11秒前
9577完成签到,获得积分10
12秒前
zhang发布了新的文献求助10
12秒前
Christine发布了新的文献求助30
13秒前
13秒前
北极光完成签到,获得积分10
13秒前
小二郎应助月影采纳,获得10
13秒前
苗条梦玉发布了新的文献求助30
14秒前
16秒前
17秒前
经卿完成签到 ,获得积分10
19秒前
20秒前
tang_c发布了新的文献求助10
20秒前
现代的盼望完成签到,获得积分10
21秒前
22秒前
chen完成签到,获得积分20
22秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053572
求助须知:如何正确求助?哪些是违规求助? 2710765
关于积分的说明 7423161
捐赠科研通 2355230
什么是DOI,文献DOI怎么找? 1246916
科研通“疑难数据库(出版商)”最低求助积分说明 606188
版权声明 595975