Efficient Reinforcement of Bipartite Networks at Billion Scale

二部图 计算机科学 人工智能 算法 理论计算机科学 图形
作者
Yizhang He,Kai Wang,Wenjie Zhang,Xuemin Lin,Ying Zhang
标识
DOI:10.1109/icde53745.2022.00038
摘要

Bipartite networks, which model relationships between two different types of entities, are prevalent in many real-world applications. On bipartite networks, the cascading node departure undermines the networks' ability to provide sustainable services, which makes reinforcing bipartite networks a vital problem. Although network reinforcement is extensively studied on unipartite networks, it remains largely unexplored on bipartite graphs. On bipartite networks, ( $\alpha, \beta$ ) -core is a stable structure that ensures different minimum engagement levels of the vertices from different layers, and we aim to reinforce bipartite networks by maximizing the ( $\alpha, \beta$ ) -core. Specifically, given a bipartite network $G$ , degree constraints $\alpha$ and $\beta$ , budgets $b_{1}$ and $b_{2}$ , we aim to find $b_{1}$ upper layer vertices and $b_{2}$ lower layer vertices as anchors and bring them into the ( $\alpha, \beta$ ) -core s.t. the number of non-anchor vertices entering in the ( $\alpha, \beta$ ) -core is maximized. We prove the problem is NP-hard and propose a heuristic algorithm FILVER to solve the problem. FILVER runs $b_{1}+b_{2}$ iterations and choose the best anchor in each iteration. Under a filter-verification framework, it reduces the pool of candidate anchors (in the filter stage) and computes the resulting ( $\alpha, \beta$ ) - core for each anchor vertex more efficiently (in the verification stage). In addition, filter-stage optimizations are proposed to further reduce “dominated” anchors and allow computation-sharing across iterations. To optimize the verification stage, we explore the cumulative effect of placing multiple anchors, which effectively reduces the number of running iterations. Extensive experiments on 18 real-world datasets and a billion-scale synthetic dataset validate the effectiveness and efficiency of our proposed techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸽子的迷信完成签到,获得积分10
刚刚
1秒前
1秒前
jeanshe619完成签到,获得积分20
3秒前
李慧颖完成签到 ,获得积分20
3秒前
3秒前
花粉过敏完成签到,获得积分10
4秒前
4秒前
852应助乌龟娟采纳,获得10
4秒前
田様应助ly采纳,获得10
5秒前
5秒前
ouyggg发布了新的文献求助10
5秒前
杜四十929完成签到,获得积分10
5秒前
阿南完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
JamesPei应助科研渣渣采纳,获得10
8秒前
djiwisksk66发布了新的文献求助10
8秒前
8秒前
背后的穆完成签到,获得积分10
9秒前
jackie发布了新的文献求助10
9秒前
墨染锦年完成签到,获得积分10
9秒前
胡健发布了新的文献求助10
10秒前
10秒前
10秒前
lyj1234完成签到,获得积分20
10秒前
慕青应助zzzjh采纳,获得10
10秒前
orixero应助麦当劳信徒采纳,获得30
11秒前
liningyao完成签到,获得积分20
11秒前
Iris发布了新的文献求助10
11秒前
12秒前
无与伦比发布了新的文献求助80
12秒前
zsq完成签到 ,获得积分20
13秒前
无相变完成签到,获得积分10
13秒前
pp完成签到 ,获得积分10
14秒前
ming发布了新的文献求助10
15秒前
TKTK发布了新的文献求助10
15秒前
RUSTY发布了新的文献求助10
15秒前
蓝橙发布了新的文献求助10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970572
求助须知:如何正确求助?哪些是违规求助? 3515219
关于积分的说明 11177438
捐赠科研通 3250374
什么是DOI,文献DOI怎么找? 1795265
邀请新用户注册赠送积分活动 875750
科研通“疑难数据库(出版商)”最低求助积分说明 805054