Efficient Reinforcement of Bipartite Networks at Billion Scale

二部图 计算机科学 人工智能 算法 理论计算机科学 图形
作者
Yizhang He,Kai Wang,Wenjie Zhang,Xuemin Lin,Ying Zhang
标识
DOI:10.1109/icde53745.2022.00038
摘要

Bipartite networks, which model relationships between two different types of entities, are prevalent in many real-world applications. On bipartite networks, the cascading node departure undermines the networks' ability to provide sustainable services, which makes reinforcing bipartite networks a vital problem. Although network reinforcement is extensively studied on unipartite networks, it remains largely unexplored on bipartite graphs. On bipartite networks, ( $\alpha, \beta$ ) -core is a stable structure that ensures different minimum engagement levels of the vertices from different layers, and we aim to reinforce bipartite networks by maximizing the ( $\alpha, \beta$ ) -core. Specifically, given a bipartite network $G$ , degree constraints $\alpha$ and $\beta$ , budgets $b_{1}$ and $b_{2}$ , we aim to find $b_{1}$ upper layer vertices and $b_{2}$ lower layer vertices as anchors and bring them into the ( $\alpha, \beta$ ) -core s.t. the number of non-anchor vertices entering in the ( $\alpha, \beta$ ) -core is maximized. We prove the problem is NP-hard and propose a heuristic algorithm FILVER to solve the problem. FILVER runs $b_{1}+b_{2}$ iterations and choose the best anchor in each iteration. Under a filter-verification framework, it reduces the pool of candidate anchors (in the filter stage) and computes the resulting ( $\alpha, \beta$ ) - core for each anchor vertex more efficiently (in the verification stage). In addition, filter-stage optimizations are proposed to further reduce “dominated” anchors and allow computation-sharing across iterations. To optimize the verification stage, we explore the cumulative effect of placing multiple anchors, which effectively reduces the number of running iterations. Extensive experiments on 18 real-world datasets and a billion-scale synthetic dataset validate the effectiveness and efficiency of our proposed techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hbpu230701完成签到,获得积分0
刚刚
Lenacici完成签到,获得积分10
1秒前
long发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
YY完成签到 ,获得积分10
4秒前
4秒前
徐进发布了新的文献求助10
7秒前
jiaolulu发布了新的文献求助10
7秒前
乐观银耳汤完成签到,获得积分10
8秒前
WJing完成签到,获得积分10
8秒前
lenetivy发布了新的文献求助20
8秒前
10秒前
linhanwenzhou发布了新的文献求助10
12秒前
yyy完成签到 ,获得积分10
12秒前
幽默的煎饼完成签到,获得积分10
12秒前
13秒前
搞怪不斜完成签到,获得积分10
13秒前
13秒前
xinxiangshicheng完成签到 ,获得积分10
14秒前
愤怒的小鸟完成签到,获得积分10
14秒前
MY完成签到,获得积分10
14秒前
顾矜应助lenetivy采纳,获得10
15秒前
自觉寒梦发布了新的文献求助10
15秒前
美好斓发布了新的文献求助10
15秒前
郑文涛完成签到,获得积分10
16秒前
JamesPei应助专注的白柏采纳,获得10
17秒前
YHY发布了新的文献求助10
19秒前
好吃发布了新的文献求助10
19秒前
拾光完成签到,获得积分10
20秒前
long完成签到 ,获得积分10
20秒前
天天向上发布了新的文献求助10
21秒前
6260完成签到,获得积分10
21秒前
pcr163应助linhanwenzhou采纳,获得50
22秒前
22秒前
酷酷元风完成签到,获得积分10
23秒前
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029