亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microfoamed Strands by 3D Foam Printing

3D打印 材料科学 高分子科学 复合材料 工程制图 工程类
作者
Daniele Tammaro,Massimiliano M. Villone,Pier Luca Maffettone
出处
期刊:Polymers [MDPI AG]
卷期号:14 (15): 3214-3214 被引量:13
标识
DOI:10.3390/polym14153214
摘要

We report the design, production, and characterization of microfoamed strands by means of a green and sustainable technology that makes use of CO2 to create ad-hoc innovative bubble morphologies. 3D foam-printing technology has been recently developed; thus, the foaming mechanism in the printer nozzle is not yet fully understood and controlled. We study the effects of the operating parameters of the 3D foam-printing process to control and optimize CO2 utilization through a maximization of the foaming efficiency. The strands' mechanical properties were measured as a function of the foam density and explained by means of an innovative model that takes into consideration the polymer's crystallinity content. The innovative microfoamed morphologies were produced using a bio-based and compostable polymer as well as polylactic acid and were then blown with CO2. The results of the extensive experimental campaigns show insightful maps of the bubble size, density, and crystallinity as a function of the process parameters, i.e., the CO2 concentration and temperature. A CO2 content of 15 wt% enables the acquirement of an incredibly low foam density of 40 kg/m3 and porosities from the macro-scale (100-900 μm) to the micro-scale (1-10 μm), depending on the temperature. The foam crystallinity content varied from 5% (using a low concentration of CO2) to 45% (using a high concentration of CO2). Indeed, we determined that the crystallinity content changes linearly with the CO2 concentration. In turn, the foamed strand's elastic modulus is strongly affected by the crystallinity content. Hence, a corrected Egli's equation was proposed to fit the strand mechanical properties as a function of foam density.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
7秒前
HJJHJH发布了新的文献求助20
12秒前
17秒前
RUSeries完成签到,获得积分10
18秒前
研友_8y2o0L发布了新的文献求助10
20秒前
RUSeries发布了新的文献求助10
22秒前
潇湘完成签到 ,获得积分10
24秒前
研友_8y2o0L完成签到,获得积分10
26秒前
科研通AI5应助姜姜采纳,获得10
28秒前
34秒前
52秒前
caroline完成签到 ,获得积分10
1分钟前
狮子沟核聚变骡子完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
SciGPT应助ukulele117采纳,获得20
1分钟前
2分钟前
炙热念双完成签到 ,获得积分10
2分钟前
2分钟前
ukulele117发布了新的文献求助20
2分钟前
山鸟与鱼不同路完成签到 ,获得积分10
2分钟前
平凡之路发布了新的文献求助10
2分钟前
2分钟前
Owen应助如意的冰旋采纳,获得10
2分钟前
JamesPei应助1004采纳,获得10
2分钟前
2分钟前
科研通AI5应助平凡之路采纳,获得10
2分钟前
2分钟前
KSung完成签到 ,获得积分10
2分钟前
如意的冰旋完成签到,获得积分10
2分钟前
领导范儿应助Magali采纳,获得30
2分钟前
2分钟前
自由文博完成签到 ,获得积分10
2分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477395
求助须知:如何正确求助?哪些是违规求助? 3068919
关于积分的说明 9109962
捐赠科研通 2760353
什么是DOI,文献DOI怎么找? 1514834
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699576