Multiscale spectral-spatial feature learning for hyperspectral image classification

高光谱成像 人工智能 模式识别(心理学) 判别式 计算机科学 特征(语言学) 空间分析 深度学习 特征学习 人工神经网络 遥感 地理 哲学 语言学
作者
Muhammad Sohail,Zhao Chen,Bin Yang,Guohua Liu
出处
期刊:Displays [Elsevier BV]
卷期号:74: 102278-102278
标识
DOI:10.1016/j.displa.2022.102278
摘要

• This work demonstrates that it is crucial to use multiscale features and spectral-spatial information for HSI classification, as proven by the excellent performances of the proposed model on various datasets. • We created a hierarchical feature fusion model, FFM, for accurate ground object classification with HSIs. In addition, the proposed model, MulNet, is effective and easy to implement. • MulNet can delicately handle spectral heterogeneity, thus enjoying good generalizability and resulting in high classification accuracy for different HSIs. Hyperspectral image (HSI) classification is a prevalent topic in the remote sensing image processing community. Recently, deep learning has been successfully applied to this area. However, there is still room for improvement. Since HSIs provide rich spectral information while being prone to spectral heterogeneity that damages the classification accuracy, we propose a multiscale spectral-spatial feature learning network (MulNet), which aptly handles the information given by HSIs. Our model is a hybrid model combined with a 3-Dimensional Residual Network (3DResNet), a Feature Fusion Module (FFM), and a Recurrent Neural Network (RNN). 3DResNet encodes the original HSIs and learns local spectral-spatial features at multiple scales, which are upsampled by different ratios and aggregated by FFM. Afterward, the fused features are fed sequentially to the RNN, which exploits HSI’s relations and broad contexts to produce discriminative features for better classification. Experiments on five real-world datasets using random and disjointed samples demonstrate the efficacy and efficiency of the proposed networks. It outperforms several classic and newly published spectral-spatial classifiers for HSIs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bigpluto完成签到,获得积分10
1秒前
fishmire完成签到,获得积分10
2秒前
3秒前
712完成签到,获得积分10
5秒前
5秒前
aaa发布了新的文献求助10
6秒前
王王完成签到 ,获得积分10
6秒前
彭于晏应助青鹧采纳,获得10
7秒前
guard发布了新的文献求助10
7秒前
糊涂的元珊完成签到 ,获得积分10
8秒前
8秒前
长情的彩虹完成签到,获得积分10
9秒前
六沉发布了新的文献求助10
9秒前
10秒前
陈老太完成签到 ,获得积分10
10秒前
彩色耳机完成签到,获得积分10
11秒前
DandanHan0916发布了新的文献求助10
11秒前
12秒前
曹毅凯完成签到,获得积分10
12秒前
phy完成签到,获得积分10
12秒前
开胃咖喱完成签到,获得积分10
13秒前
老男孩完成签到,获得积分10
13秒前
范先生完成签到,获得积分10
14秒前
Ray_Chun发布了新的文献求助10
15秒前
Derik完成签到,获得积分10
15秒前
鄂雪娇完成签到,获得积分20
17秒前
17秒前
小雨点完成签到,获得积分10
17秒前
李朋完成签到,获得积分10
18秒前
SpongeBob完成签到,获得积分10
18秒前
aaa完成签到,获得积分10
18秒前
hehe完成签到,获得积分10
19秒前
21秒前
小河发布了新的文献求助50
21秒前
22秒前
剑指天涯完成签到,获得积分10
23秒前
共享精神应助长情的彩虹采纳,获得10
23秒前
lizhiqian2024完成签到,获得积分10
23秒前
怕黑书翠发布了新的文献求助10
25秒前
兲卷儿完成签到,获得积分20
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965864
求助须知:如何正确求助?哪些是违规求助? 3511176
关于积分的说明 11156785
捐赠科研通 3245809
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804278