亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

NSGA‐II‐XGB: Meta‐heuristic feature selection with XGBoost framework for diabetes prediction

特征选择 计算机科学 人工智能 预处理器 维数之咒 集成学习 规范化(社会学) 机器学习 数据挖掘 社会学 人类学
作者
Aditya Gupta,Ishwari Singh Rajput,Gunjan,Vibha Jain,Soni Chaurasia
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:34 (21) 被引量:7
标识
DOI:10.1002/cpe.7123
摘要

Summary Diabetes is one of the most prevalent causes of casualties in the modern world. Early diagnosis of diabetes is the most promising way for increasing the chances of patients' survival. The ever‐growing technology of the current era, machine learning‐based algorithms pave the door in the healthcare industry by delivering efficient decision support services in real‐time. However, high‐dimensionality of the data obtained using multiple sources increases the computation time and significantly impacts the models' efficiency in classifying the results. Feature selection improves learning performance and reduces the computational cost by selecting subsets of features and eliminating unnecessary and irrelevant features. In this article, an attempt has been made to develop a hybrid machine learning model based on non‐dominated sorting genetic algorithm (NSGA‐II) and ensemble learning for the efficient categorization of diabetes. The proposed work uses various data preprocessing techniques, such as missing data handling and normalization, prior to model training. The most prominent and salient features are selected by exploiting the potential of the NSGA‐II in the diabetes dataset. Finally, an ensemble learning‐based extreme gradient boosting (XGBoost) model is modeled using features selected by NSGA‐II to classify patients as diabetic or non‐diabetic. The proposed methodology is experimentally validated using a hybridized dataset comprising 23 features, with 1288 instances of both male and female patients between the ages of 21 and 65. In addition, for performance evaluation, the results of statistical parameters are compared with several state‐of‐the‐art decision‐making models in the current domain. Experiment findings exemplify that the proposed NSGA‐II‐XGB approach gives better classification results with an average accuracy of 98.86%. Furthermore, the statistical results of specificity (88.6%), sensitivity (96.36%), and F‐score (97.84%) also support the utility of the proposed methodology in the early diagnosis of diabetes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助gmugyy采纳,获得10
3秒前
量子星尘发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
16秒前
yyr完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
33秒前
Deven应助maple采纳,获得30
53秒前
量子星尘发布了新的文献求助10
53秒前
彭于晏应助科研通管家采纳,获得10
54秒前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
hihi发布了新的文献求助10
1分钟前
eurhfe完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
hihi完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Krim完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
gmugyy发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
儒雅龙完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
gmugyy完成签到,获得积分10
3分钟前
blenx完成签到,获得积分10
3分钟前
zxw发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660952
求助须知:如何正确求助?哪些是违规求助? 3222196
关于积分的说明 9743875
捐赠科研通 2931744
什么是DOI,文献DOI怎么找? 1605205
邀请新用户注册赠送积分活动 757740
科研通“疑难数据库(出版商)”最低求助积分说明 734465