Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助qwerty采纳,获得10
刚刚
笑相完成签到,获得积分10
刚刚
1秒前
Coco完成签到 ,获得积分10
1秒前
1秒前
2秒前
mengdewen发布了新的文献求助30
2秒前
OU发布了新的文献求助10
2秒前
3秒前
科研通AI6应助伞下铭采纳,获得10
3秒前
科研通AI6应助伞下铭采纳,获得10
3秒前
CipherSage应助干净的友卉采纳,获得10
3秒前
dada完成签到 ,获得积分10
4秒前
4秒前
科研小卡拉米完成签到,获得积分10
5秒前
SciGPT应助CHINA_C13采纳,获得10
5秒前
orixero应助CHINA_C13采纳,获得10
5秒前
CodeCraft应助CHINA_C13采纳,获得150
5秒前
科研通AI6应助CHINA_C13采纳,获得150
5秒前
科研通AI6应助CHINA_C13采纳,获得10
5秒前
科研通AI6应助CHINA_C13采纳,获得150
5秒前
小羊先生完成签到 ,获得积分10
5秒前
云游归尘发布了新的文献求助10
6秒前
小童发布了新的文献求助10
6秒前
饱满以松完成签到 ,获得积分10
6秒前
6秒前
7秒前
平平发布了新的文献求助10
7秒前
凶狠的储发布了新的文献求助10
7秒前
冰菱完成签到,获得积分10
7秒前
Owen应助碎碎采纳,获得10
7秒前
warithy发布了新的文献求助10
8秒前
Ethanyoyo0917完成签到,获得积分10
8秒前
Ava应助优雅的老姆采纳,获得10
8秒前
liekkas发布了新的文献求助10
8秒前
9秒前
小赵发布了新的文献求助30
10秒前
背包包包应助知性的雅彤采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002