Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alvin完成签到,获得积分10
刚刚
paulmichael完成签到,获得积分10
1秒前
1秒前
2秒前
NPC-CBI完成签到,获得积分10
2秒前
3秒前
gaozige发布了新的文献求助10
3秒前
3秒前
Deyong发布了新的文献求助10
3秒前
zjy完成签到,获得积分10
4秒前
4秒前
善学以致用应助认真擎汉采纳,获得20
4秒前
5秒前
武雨寒完成签到,获得积分20
5秒前
5秒前
whoKnows应助露西亚采纳,获得20
6秒前
6秒前
njhuxs发布了新的文献求助10
6秒前
曲聋五发布了新的文献求助10
6秒前
Orange应助番茄薯片真好吃采纳,获得10
6秒前
paulmichael发布了新的文献求助10
7秒前
viang完成签到,获得积分10
7秒前
8秒前
不会取名完成签到,获得积分20
8秒前
武雨寒发布了新的文献求助10
8秒前
8秒前
开放的芮发布了新的文献求助10
9秒前
顾矜应助zjy采纳,获得10
9秒前
Haki发布了新的文献求助10
9秒前
10秒前
scainiao发布了新的文献求助10
10秒前
涛1完成签到 ,获得积分10
10秒前
彩虹糖发布了新的文献求助10
11秒前
collin发布了新的文献求助10
11秒前
11秒前
盐植物发布了新的文献求助10
11秒前
bsf123完成签到,获得积分10
12秒前
mine发布了新的文献求助10
12秒前
12秒前
Sunny完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933582
求助须知:如何正确求助?哪些是违规求助? 4201685
关于积分的说明 13054603
捐赠科研通 3975759
什么是DOI,文献DOI怎么找? 2178584
邀请新用户注册赠送积分活动 1194854
关于科研通互助平台的介绍 1106269