Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uraylong发布了新的文献求助10
1秒前
1秒前
enmnm发布了新的文献求助10
1秒前
充电宝应助行止采纳,获得30
2秒前
科研通AI2S应助飘逸雁荷采纳,获得10
2秒前
李爱国应助sunrase采纳,获得10
2秒前
哇塞完成签到 ,获得积分10
2秒前
3秒前
3秒前
轨迹应助淡然天问采纳,获得10
4秒前
轨迹应助淡然天问采纳,获得30
4秒前
4秒前
dong发布了新的文献求助10
5秒前
NexusExplorer应助zzq采纳,获得10
6秒前
王振军完成签到,获得积分10
6秒前
淡然的纹完成签到,获得积分10
6秒前
7秒前
小宝完成签到,获得积分10
7秒前
7秒前
叨叨小夫夫完成签到,获得积分10
7秒前
7秒前
8秒前
Genius发布了新的文献求助10
8秒前
齐小明发布了新的文献求助10
9秒前
orixero应助wsqg123采纳,获得10
10秒前
青阳发布了新的文献求助10
10秒前
10秒前
10秒前
亦亦发布了新的文献求助10
11秒前
Twonej应助ZWZWXY采纳,获得30
11秒前
hay完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
英姑应助常小敏采纳,获得10
12秒前
wuyyuan完成签到 ,获得积分10
12秒前
标致的问晴完成签到,获得积分10
12秒前
谭柠倩发布了新的文献求助10
13秒前
hhhhh发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906