Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助温伊采纳,获得10
1秒前
1秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
hellogene完成签到,获得积分10
7秒前
xuan发布了新的文献求助10
8秒前
情怀应助糟糕的铁锤采纳,获得20
8秒前
8秒前
今后应助zeal采纳,获得10
8秒前
JUNLINGDENG发布了新的文献求助10
10秒前
桐桐应助三四月采纳,获得10
10秒前
柔弱飞槐完成签到,获得积分10
10秒前
11秒前
11秒前
小蘑菇应助一一采纳,获得10
12秒前
13秒前
丘比特应助糟糕的铁锤采纳,获得20
13秒前
13秒前
自由凝竹发布了新的文献求助10
14秒前
华仔应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得10
16秒前
Hello应助KHromance采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
lalala发布了新的文献求助10
17秒前
ffff发布了新的文献求助10
18秒前
阔达芾发布了新的文献求助10
18秒前
思源应助黄静采纳,获得30
19秒前
李爱国应助大成子采纳,获得10
19秒前
维生素完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406