亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
一点发布了新的文献求助10
11秒前
心心子完成签到 ,获得积分10
13秒前
俭朴蜜蜂完成签到 ,获得积分10
20秒前
20秒前
糖诗完成签到 ,获得积分10
21秒前
香鸡滑菇发布了新的文献求助10
25秒前
25秒前
27秒前
和谐半青发布了新的文献求助10
30秒前
真实的bbbb发布了新的文献求助10
31秒前
gkads完成签到,获得积分10
34秒前
37秒前
可乐发布了新的文献求助10
41秒前
45秒前
文文完成签到 ,获得积分10
50秒前
Suc发布了新的文献求助10
51秒前
1分钟前
活力竺发布了新的文献求助10
1分钟前
27小天使完成签到,获得积分10
1分钟前
allen完成签到,获得积分10
1分钟前
1分钟前
王金煜发布了新的文献求助30
1分钟前
王金煜完成签到,获得积分20
1分钟前
真实的bbbb完成签到,获得积分10
1分钟前
1分钟前
嘿嘿应助breeze采纳,获得30
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
TTTHANKS完成签到 ,获得积分10
2分钟前
王某完成签到 ,获得积分10
2分钟前
2分钟前
枖堇发布了新的文献求助10
2分钟前
Ava应助汤婆婆采纳,获得10
2分钟前
喜悦的虔发布了新的文献求助10
2分钟前
2分钟前
max完成签到 ,获得积分10
2分钟前
2分钟前
嘿嘿应助breeze采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568155
求助须知:如何正确求助?哪些是违规求助? 4652598
关于积分的说明 14701831
捐赠科研通 4594464
什么是DOI,文献DOI怎么找? 2520964
邀请新用户注册赠送积分活动 1492847
关于科研通互助平台的介绍 1463696