亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细心从阳完成签到,获得积分10
3秒前
9秒前
ceeray23发布了新的文献求助20
15秒前
16秒前
22秒前
天才玩家H完成签到,获得积分10
23秒前
31秒前
XP完成签到 ,获得积分10
33秒前
38秒前
龙06驳回了泷生应助
44秒前
林一发布了新的文献求助20
45秒前
科研通AI2S应助Ww采纳,获得10
48秒前
背后晓兰完成签到 ,获得积分10
50秒前
51秒前
55秒前
55秒前
1分钟前
1分钟前
1分钟前
赘婿应助PPD采纳,获得10
1分钟前
清浅发布了新的文献求助30
1分钟前
1分钟前
PPD发布了新的文献求助10
1分钟前
颢懿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
mm发布了新的文献求助10
1分钟前
1分钟前
31325发布了新的文献求助10
1分钟前
科研通AI2S应助XIII采纳,获得10
1分钟前
dh完成签到,获得积分0
1分钟前
1分钟前
1分钟前
Criminology34应助清浅采纳,获得10
1分钟前
天天快乐应助清浅采纳,获得10
1分钟前
苗苗完成签到 ,获得积分10
1分钟前
二丙发布了新的文献求助10
1分钟前
1分钟前
NEUROVASCULAR发布了新的文献求助10
1分钟前
XIII发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984