亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Visualization deep learning model for automatic arrhythmias classification

可解释性 判别式 人工智能 计算机科学 可视化 深度学习 机器学习 支持向量机 模式识别(心理学) 数据挖掘 心律失常 医学 心脏病学 心房颤动
作者
Mingfeng Jiang,Yujie Qiu,Wei Zhang,Jucheng Zhang,Zhefeng Wang,Wei Ke,Yongquan Wu,Zhikang Wang
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (8): 085003-085003 被引量:16
标识
DOI:10.1088/1361-6579/ac8469
摘要

Objective.With the improvement of living standards, heart disease has become one of the common diseases that threaten human health. Electrocardiography (ECG) is an effective way of diagnosing cardiovascular diseases. With the rapid growth of ECG examinations and the shortage of cardiologists, accurate and automatic arrhythmias classification has become a research hotspot. The main purpose of this paper is to improve accuracy in detecting abnormal ECG patterns.Approach.A hybrid 1D Resnet-GRU method, consisting of the Resnet and gated recurrent unit (GRU) modules, is proposed to implement classification of arrhythmias from 12-lead ECG recordings. In addition, the focal Loss function is used to solve the problem of unbalanced datasets. Based on the proposed 1D Resnet-GRU model, we use class-discriminative visualization to improve interpretability and transparency as an additional step. In this paper, the Grad-CAM++ mechanism has been employed to the trained network model and generate thermal images superimposed on raw signals to explore underlying explanations of various ECG segments.Main results.The experimental results show that the proposed method can achieve a high score of 0.821 (F1-score) in classifying 9 kinds of arrythmias, and Grad-CAM++ not only provides insight into the predictive power of the model, but is also consistent with the diagnostic approach of the arrhythmia classification.Significance.The proposed method can effectively select and integrate ECG features to achieve the goal of end-to-end arrhythmia classification by using 12-lead ECG signals, which can serve a promising and useful way for automatic arrhythmia classification, and can provide an explainable deep leaning model for clinical diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
平淡剑鬼发布了新的文献求助10
7秒前
muuuu发布了新的文献求助30
9秒前
田様应助超级野狼采纳,获得10
9秒前
舒适续发布了新的文献求助30
10秒前
12秒前
无私白风完成签到,获得积分10
13秒前
卞兰完成签到,获得积分10
15秒前
大个应助欣怡采纳,获得10
16秒前
zsmj23完成签到 ,获得积分0
16秒前
喜悦的小土豆完成签到 ,获得积分10
23秒前
26秒前
27秒前
cm关闭了cm文献求助
27秒前
舒适续完成签到,获得积分10
29秒前
超级野狼发布了新的文献求助10
30秒前
危笑发布了新的文献求助20
33秒前
35秒前
Tine完成签到,获得积分10
37秒前
Tine发布了新的文献求助10
40秒前
smm完成签到 ,获得积分10
40秒前
科研通AI6.1应助muuuu采纳,获得30
40秒前
不摇碧莲完成签到 ,获得积分10
40秒前
42秒前
43秒前
三岁完成签到 ,获得积分10
46秒前
46秒前
light111发布了新的文献求助10
47秒前
传统的丹雪完成签到,获得积分10
47秒前
48秒前
49秒前
SIKI发布了新的文献求助10
51秒前
小羊要努力完成签到,获得积分10
52秒前
李同学发布了新的文献求助30
53秒前
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754644
求助须知:如何正确求助?哪些是违规求助? 5488236
关于积分的说明 15380380
捐赠科研通 4893172
什么是DOI,文献DOI怎么找? 2631766
邀请新用户注册赠送积分活动 1579709
关于科研通互助平台的介绍 1535463