Refined Self-Attention Transformer Model for ECG-Based Arrhythmia Detection

变压器 计算机科学 电子工程 工程类 电气工程 电压
作者
Yanyun Tao,Biao Xu,Biao Xu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14
标识
DOI:10.1109/tim.2024.3400302
摘要

As the length of electrocardiogram (ECG) sequences increases, most current transformer models demand substantial computational resources for ECG arrhythmia detection. Additionally, conventional single-scale tokens encounter difficulties in accommodating various patterns of arrhythmia. Thus, in this study, a refined-attention transformer model for arrhythmia detection was proposed. Our model introduces two refined attention mechanisms, namely, refined diag- and gated linear attentions, effectively alleviating computational burdens associated with unnecessary correlations between heartbeats. To address rhythmic and beat-pattern arrhythmias, we used two refined transformer models with a collaborative block, leveraging coarse- and fine-grained tokens to capture inter- and intra-heartbeat correlations. The collaborative block between two models facilitates the exchange of rhythm information, thereby improving the accuracy of beat detection. On the MIT-BIH dataset, our refined attentions yield over a 65% reduction in computational efforts compared with conventional self-attention. Notably, our refined transformer models achieve 96% accuracy for rhythmic detection and rank within the top two performers for all types of heartbeat detection. Moreover, the collaborative block enhances the recall by 8.8% and precision by 3.4% for atrial premature detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
WYS发布了新的文献求助10
2秒前
清爽伯云应助无奈的道天采纳,获得10
2秒前
putong完成签到,获得积分10
2秒前
echo完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
Jasper应助Brain采纳,获得10
3秒前
jianrobsim发布了新的文献求助10
4秒前
研友_赖冰凡完成签到,获得积分10
4秒前
一期一会发布了新的文献求助10
4秒前
4秒前
ARES昔年完成签到,获得积分10
4秒前
5秒前
6秒前
杨老师发布了新的文献求助10
6秒前
小巧的越泽完成签到,获得积分10
6秒前
6秒前
7秒前
Wwww发布了新的文献求助10
9秒前
9秒前
9秒前
Pan发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
zanie完成签到,获得积分10
10秒前
jasmine完成签到 ,获得积分10
11秒前
小苑完成签到,获得积分10
11秒前
鲸落发布了新的文献求助10
11秒前
机灵的醉山完成签到,获得积分10
11秒前
安静代萱完成签到 ,获得积分10
12秒前
12秒前
12秒前
清爽伯云应助卜钊采纳,获得10
13秒前
black发布了新的文献求助10
14秒前
无心的浩轩完成签到,获得积分10
14秒前
852应助zanie采纳,获得10
14秒前
海波完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604729
求助须知:如何正确求助?哪些是违规求助? 4012976
关于积分的说明 12425700
捐赠科研通 3693576
什么是DOI,文献DOI怎么找? 2036429
邀请新用户注册赠送积分活动 1069421
科研通“疑难数据库(出版商)”最低求助积分说明 953917