Refined Self-Attention Transformer Model for ECG-Based Arrhythmia Detection

变压器 计算机科学 电子工程 工程类 电气工程 电压
作者
Yanyun Tao,Biao Xu,Biao Xu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-14
标识
DOI:10.1109/tim.2024.3400302
摘要

As the length of electrocardiogram (ECG) sequences increases, most current transformer models demand substantial computational resources for ECG arrhythmia detection. Additionally, conventional single-scale tokens encounter difficulties in accommodating various patterns of arrhythmia. Thus, in this study, a refined-attention transformer model for arrhythmia detection was proposed. Our model introduces two refined attention mechanisms, namely, refined diag- and gated linear attentions, effectively alleviating computational burdens associated with unnecessary correlations between heartbeats. To address rhythmic and beat-pattern arrhythmias, we used two refined transformer models with a collaborative block, leveraging coarse- and fine-grained tokens to capture inter- and intra-heartbeat correlations. The collaborative block between two models facilitates the exchange of rhythm information, thereby improving the accuracy of beat detection. On the MIT-BIH dataset, our refined attentions yield over a 65% reduction in computational efforts compared with conventional self-attention. Notably, our refined transformer models achieve 96% accuracy for rhythmic detection and rank within the top two performers for all types of heartbeat detection. Moreover, the collaborative block enhances the recall by 8.8% and precision by 3.4% for atrial premature detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lum1na完成签到,获得积分10
1秒前
charles完成签到,获得积分10
1秒前
3秒前
4秒前
xin发布了新的文献求助10
4秒前
6秒前
平常的羊完成签到 ,获得积分10
7秒前
东方欲晓完成签到 ,获得积分0
7秒前
0o0发布了新的文献求助10
8秒前
rpe发布了新的文献求助10
9秒前
9秒前
www发布了新的文献求助10
9秒前
可爱的函函应助maybe采纳,获得10
10秒前
CAOHOU举报zhang97求助涉嫌违规
10秒前
13秒前
俭朴士晋完成签到,获得积分10
14秒前
茜茜发布了新的文献求助30
14秒前
zfy完成签到 ,获得积分10
15秒前
材1完成签到 ,获得积分10
16秒前
hug完成签到,获得积分0
17秒前
Ricardo完成签到,获得积分10
17秒前
spoon1026完成签到,获得积分10
17秒前
18秒前
19秒前
英姑应助欢喜妙梦采纳,获得10
20秒前
20秒前
未来2完成签到,获得积分20
21秒前
chen发布了新的文献求助20
23秒前
涛tao发布了新的文献求助10
23秒前
24秒前
动听安筠完成签到 ,获得积分10
24秒前
26秒前
26秒前
崔崔完成签到 ,获得积分10
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
上官若男应助科研通管家采纳,获得10
27秒前
27秒前
wu8577应助科研通管家采纳,获得10
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
wu8577应助科研通管家采纳,获得10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962406
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141198
捐赠科研通 3241162
什么是DOI,文献DOI怎么找? 1791358
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803396