材料科学
金属锂
共聚物
纳米纤维
锂(药物)
电解质
陶瓷
复合材料
固态
金属
铁电性
化学工程
电介质
聚合物
电极
冶金
工程物理
物理化学
医学
化学
光电子学
工程类
内分泌学
作者
Shuhui Ge,Jiawei Wu,Rui Wang,Liang Zhang,Shujie Liu,Xianda Ma,Kun Fu,Jianhua Yan,Jianyong Yu,Bin Ding
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-05-15
卷期号:18 (21): 13818-13828
被引量:2
标识
DOI:10.1021/acsnano.4c02236
摘要
Ion transport efficiency, the key to determining the cycling stability and rate capability of all-solid-state lithium metal batteries (ASSLMBs), is constrained by ionic conductivity and Li+-migration ability across the multicomponent phases and interfaces in ASSLMBs. Here, we report a robust strategy for the large-scale fabrication of a practical solid electrolyte composite with high-throughput linear Li+-transport channels by compositing an all-trans block copolymer PVDF-b-PTFE matrix with ferroelectric BaTiO3–TiO2 nanofiber films. The electrolyte shows a sustainable electromechanical-coupled deformability that enables the rapid dissociation of anions with Li+ to create more movable Li+ ions and spontaneously transform the battery internal strain into Li+-ion migration kinetic energy. The ceramic framework homogenizes the interfacial potential with electrodes, endowing the electrolyte with a high conductivity of 0.782 mS·cm–1 and stable ion transport ability in ASSLMBs at room temperature. The batteries of LiFePO4/Li can stably cycle 1000 times at 0.5 C with a high capacity retention of 96.1%, and Ah-grade pouch or high-voltage Li(Ni0.8Mn0.1Co0.1)O2/Li batteries also exhibit excellent rate capability and cycling performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI