亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence–Enabled Quantitative Coronary Plaque and Hemodynamic Analysis for Predicting Acute Coronary Syndrome

急性冠脉综合征 心脏病学 内科学 血流动力学 医学 心肌梗塞
作者
Bon‐Kwon Koo,Seokhun Yang,Jae Wook Jung,Jinlong Zhang,Keehwan Lee,Doyeon Hwang,Kyu‐Sun Lee,Joon‐Hyung Doh,Chang‐Wook Nam,Tae Hyun Kim,Eun‐Seok Shin,Eun Ju Chun,Suyeon Choi,Hyun Kuk Kim,Young Joon Hong,Hun‐Jun Park,Song‐Yi Kim,Mirza Husic,Jess Lambrechtsen,Jesper Møller Jensen
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:17 (9): 1062-1076 被引量:21
标识
DOI:10.1016/j.jcmg.2024.03.015
摘要

A lesion-level risk prediction for acute coronary syndrome (ACS) needs better characterization. This study sought to investigate the additive value of artificial intelligence–enabled quantitative coronary plaque and hemodynamic analysis (AI-QCPHA). Among ACS patients who underwent coronary computed tomography angiography (CTA) from 1 month to 3 years before the ACS event, culprit and nonculprit lesions on coronary CTA were adjudicated based on invasive coronary angiography. The primary endpoint was the predictability of the risk models for ACS culprit lesions. The reference model included the Coronary Artery Disease Reporting and Data System, a standardized classification for stenosis severity, and high-risk plaque, defined as lesions with ≥2 adverse plaque characteristics. The new prediction model was the reference model plus AI-QCPHA features, selected by hierarchical clustering and information gain in the derivation cohort. The model performance was assessed in the validation cohort. Among 351 patients (age: 65.9 ± 11.7 years) with 2,088 nonculprit and 363 culprit lesions, the median interval from coronary CTA to ACS event was 375 days (Q1-Q3: 95-645 days), and 223 patients (63.5%) presented with myocardial infarction. In the derivation cohort (n = 243), the best AI-QCPHA features were fractional flow reserve across the lesion, plaque burden, total plaque volume, low-attenuation plaque volume, and averaged percent total myocardial blood flow. The addition of AI-QCPHA features showed higher predictability than the reference model in the validation cohort (n = 108) (AUC: 0.84 vs 0.78; P < 0.001). The additive value of AI-QCPHA features was consistent across different timepoints from coronary CTA. AI-enabled plaque and hemodynamic quantification enhanced the predictability for ACS culprit lesions over the conventional coronary CTA analysis. (Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coronary Computed Tomography Angiography and Computational Fluid Dynamics II [EMERALD-II]; NCT03591328)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
冷艳的灭龙完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
1分钟前
星际舟完成签到,获得积分10
2分钟前
比比谁的速度快给小幻的求助进行了留言
2分钟前
2分钟前
香蕉念薇发布了新的文献求助10
2分钟前
swayqur发布了新的文献求助30
2分钟前
所所应助卡卡采纳,获得10
3分钟前
wanjingwan完成签到 ,获得积分10
3分钟前
swayqur完成签到,获得积分10
3分钟前
学术小垃圾应助香蕉念薇采纳,获得10
3分钟前
3分钟前
fkdbdy发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助等待夏旋采纳,获得10
3分钟前
Hello应助跳跃采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
4分钟前
跳跃发布了新的文献求助10
4分钟前
典雅幻然发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助20
4分钟前
跳跃完成签到,获得积分20
4分钟前
朴素的山蝶完成签到 ,获得积分10
5分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
赘婿应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
努力努力再努力完成签到,获得积分10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015118
求助须知:如何正确求助?哪些是违规求助? 3555096
关于积分的说明 11317842
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983