Artificial Intelligence–Enabled Quantitative Coronary Plaque and Hemodynamic Analysis for Predicting Acute Coronary Syndrome

急性冠脉综合征 心脏病学 内科学 血流动力学 医学 心肌梗塞
作者
Bon‐Kwon Koo,Seokhun Yang,Jae Wook Jung,Jinlong Zhang,Keehwan Lee,Doyeon Hwang,Kyu‐Sun Lee,Joon‐Hyung Doh,Chang‐Wook Nam,Tae Hyun Kim,Eun‐Seok Shin,Eun Ju Chun,Suyeon Choi,Hyun Kuk Kim,Young Joon Hong,Hun‐Jun Park,Song‐Yi Kim,Mirza Husic,Jess Lambrechtsen,Jesper Møller Jensen,Bjarne Linde Nørgaard,Daniele Andreini,Pál Maurovich‐Horvat,Béla Merkely,Martin Pěnička,Bernard De Bruyne,Abdul Rahman Ihdayhid,Brian Ko,Γεώργιος Τζίμας,Jonathon Leipsic,Javier Sanz,Mark Rabbat,Farhan Katchi,Moneal Shah,Nobuhiro Tanaka,Ryo Nakazato,Taku Asano,Mitsuyasu Terashima,Hiroaki Takashima,Tetsuya Amano,Yoshihiro Sobue,Hitoshi Matsuo,Hiromasa Otake,Takashi Kubo,Masahiro Takahata,Takashi Akasaka,Teruhito Kido,Teruhito Mochizuki,Hiroyoshi Yokoi,Taichi Okonogi,Tomohiro Kawasaki,Kōichi Nakao,Tomohiro Sakamoto,Taishi Yonetsu,Tsunekazu Kakuta,Yohei Yamauchi,Jeroen J. Bax,Leslee J. Shaw,Peter H. Stone,Jagat Narula
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:17 (9): 1062-1076 被引量:9
标识
DOI:10.1016/j.jcmg.2024.03.015
摘要

A lesion-level risk prediction for acute coronary syndrome (ACS) needs better characterization. This study sought to investigate the additive value of artificial intelligence–enabled quantitative coronary plaque and hemodynamic analysis (AI-QCPHA). Among ACS patients who underwent coronary computed tomography angiography (CTA) from 1 month to 3 years before the ACS event, culprit and nonculprit lesions on coronary CTA were adjudicated based on invasive coronary angiography. The primary endpoint was the predictability of the risk models for ACS culprit lesions. The reference model included the Coronary Artery Disease Reporting and Data System, a standardized classification for stenosis severity, and high-risk plaque, defined as lesions with ≥2 adverse plaque characteristics. The new prediction model was the reference model plus AI-QCPHA features, selected by hierarchical clustering and information gain in the derivation cohort. The model performance was assessed in the validation cohort. Among 351 patients (age: 65.9 ± 11.7 years) with 2,088 nonculprit and 363 culprit lesions, the median interval from coronary CTA to ACS event was 375 days (Q1-Q3: 95-645 days), and 223 patients (63.5%) presented with myocardial infarction. In the derivation cohort (n = 243), the best AI-QCPHA features were fractional flow reserve across the lesion, plaque burden, total plaque volume, low-attenuation plaque volume, and averaged percent total myocardial blood flow. The addition of AI-QCPHA features showed higher predictability than the reference model in the validation cohort (n = 108) (AUC: 0.84 vs 0.78; P < 0.001). The additive value of AI-QCPHA features was consistent across different timepoints from coronary CTA. AI-enabled plaque and hemodynamic quantification enhanced the predictability for ACS culprit lesions over the conventional coronary CTA analysis. (Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coronary Computed Tomography Angiography and Computational Fluid Dynamics II [EMERALD-II]; NCT03591328)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qiqi完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
喻辰星发布了新的文献求助10
2秒前
jasmine970000完成签到,获得积分10
2秒前
神勇的雅香应助zhanzhanzhan采纳,获得10
3秒前
研友_8yPrqZ完成签到,获得积分10
3秒前
自信的伊完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
爆米花应助9℃采纳,获得10
5秒前
Raymond完成签到,获得积分0
6秒前
鱼雷发布了新的文献求助10
6秒前
甜蜜秋蝶发布了新的文献求助10
6秒前
ysl发布了新的文献求助30
6秒前
yyy完成签到,获得积分10
6秒前
6秒前
自信的伊发布了新的文献求助10
7秒前
Stanley发布了新的文献求助10
7秒前
wang发布了新的文献求助10
7秒前
7秒前
大鹏发布了新的文献求助50
7秒前
丘比特应助艺玲采纳,获得10
7秒前
hobowei发布了新的文献求助10
8秒前
梦里见陈情完成签到,获得积分10
8秒前
JJJ应助szh123采纳,获得10
8秒前
FFFFFFF应助细腻沅采纳,获得10
8秒前
ym发布了新的文献求助10
8秒前
Yn完成签到 ,获得积分10
9秒前
9秒前
秋季完成签到,获得积分10
10秒前
wwb完成签到,获得积分10
10秒前
张自信完成签到,获得积分10
11秒前
华仔应助VDC采纳,获得10
11秒前
嘟嘟完成签到,获得积分10
12秒前
卡卡完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762