Artificial Intelligence–Enabled Quantitative Coronary Plaque and Hemodynamic Analysis for Predicting Acute Coronary Syndrome

急性冠脉综合征 心脏病学 内科学 血流动力学 医学 心肌梗塞
作者
Bon‐Kwon Koo,Seokhun Yang,Jae Wook Jung,Jinlong Zhang,Keehwan Lee,Doyeon Hwang,Kyu‐Sun Lee,Joon‐Hyung Doh,Chang‐Wook Nam,Tae Hyun Kim,Eun‐Seok Shin,Eun Ju Chun,Suyeon Choi,Hyun Kuk Kim,Young Joon Hong,Hun‐Jun Park,Song‐Yi Kim,Mirza Husic,Jess Lambrechtsen,Jesper Møller Jensen
出处
期刊:Jacc-cardiovascular Imaging [Elsevier]
卷期号:17 (9): 1062-1076 被引量:53
标识
DOI:10.1016/j.jcmg.2024.03.015
摘要

A lesion-level risk prediction for acute coronary syndrome (ACS) needs better characterization. This study sought to investigate the additive value of artificial intelligence–enabled quantitative coronary plaque and hemodynamic analysis (AI-QCPHA). Among ACS patients who underwent coronary computed tomography angiography (CTA) from 1 month to 3 years before the ACS event, culprit and nonculprit lesions on coronary CTA were adjudicated based on invasive coronary angiography. The primary endpoint was the predictability of the risk models for ACS culprit lesions. The reference model included the Coronary Artery Disease Reporting and Data System, a standardized classification for stenosis severity, and high-risk plaque, defined as lesions with ≥2 adverse plaque characteristics. The new prediction model was the reference model plus AI-QCPHA features, selected by hierarchical clustering and information gain in the derivation cohort. The model performance was assessed in the validation cohort. Among 351 patients (age: 65.9 ± 11.7 years) with 2,088 nonculprit and 363 culprit lesions, the median interval from coronary CTA to ACS event was 375 days (Q1-Q3: 95-645 days), and 223 patients (63.5%) presented with myocardial infarction. In the derivation cohort (n = 243), the best AI-QCPHA features were fractional flow reserve across the lesion, plaque burden, total plaque volume, low-attenuation plaque volume, and averaged percent total myocardial blood flow. The addition of AI-QCPHA features showed higher predictability than the reference model in the validation cohort (n = 108) (AUC: 0.84 vs 0.78; P < 0.001). The additive value of AI-QCPHA features was consistent across different timepoints from coronary CTA. AI-enabled plaque and hemodynamic quantification enhanced the predictability for ACS culprit lesions over the conventional coronary CTA analysis. (Exploring the Mechanism of Plaque Rupture in Acute Coronary Syndrome Using Coronary Computed Tomography Angiography and Computational Fluid Dynamics II [EMERALD-II]; NCT03591328)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官若男应助热心的血茗采纳,获得10
1秒前
3秒前
东东发布了新的文献求助10
6秒前
崔尔蓉完成签到,获得积分10
8秒前
chenzhi发布了新的文献求助10
8秒前
标致无心完成签到,获得积分10
9秒前
ding应助Jodie采纳,获得10
10秒前
wdchenaic发布了新的文献求助10
10秒前
12秒前
张zhang发布了新的文献求助10
13秒前
双儿发布了新的文献求助10
15秒前
orixero应助木光采纳,获得10
17秒前
Owen应助季刘杰采纳,获得10
19秒前
东东完成签到,获得积分20
20秒前
Akim应助圆滚滚的大肥猫采纳,获得10
24秒前
进取拼搏发布了新的文献求助10
25秒前
26秒前
CodeCraft应助Tsuki采纳,获得10
29秒前
Jodie发布了新的文献求助10
29秒前
song完成签到,获得积分10
30秒前
Messi完成签到,获得积分10
35秒前
彤彤发布了新的文献求助10
37秒前
38秒前
斯文败类应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
ding应助科研通管家采纳,获得10
39秒前
科目三应助科研通管家采纳,获得30
39秒前
浮游应助科研通管家采纳,获得10
39秒前
Hanoi347应助科研通管家采纳,获得10
39秒前
脑洞疼应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
无极微光应助科研通管家采纳,获得20
39秒前
浮游应助科研通管家采纳,获得10
39秒前
大个应助科研通管家采纳,获得10
39秒前
JamesPei应助科研通管家采纳,获得10
39秒前
所所应助科研通管家采纳,获得30
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560339
求助须知:如何正确求助?哪些是违规求助? 4645494
关于积分的说明 14675277
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915