Res2Net-based multi-scale and multi-attention model for traffic scene image classification

计算机科学 稳健性(进化) 人工智能 特征提取 棱锥(几何) 特征(语言学) 模式识别(心理学) 频道(广播) 计算机视觉 数据挖掘 机器学习 计算机网络 生物化学 化学 物理 语言学 哲学 光学 基因
作者
Guanghui Gao,Yining Guo,Lumei Zhou,Li Li,Gang Shi
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (5): e0300017-e0300017
标识
DOI:10.1371/journal.pone.0300017
摘要

With the increasing applications of traffic scene image classification in intelligent transportation systems, there is a growing demand for improved accuracy and robustness in this classification task. However, due to weather conditions, time, lighting variations, and annotation costs, traditional deep learning methods still have limitations in extracting complex traffic scene features and achieving higher recognition accuracy. The previous classification methods for traffic scene images had gaps in multi-scale feature extraction and the combination of frequency domain, spatial, and channel attention. To address these issues, this paper proposes a multi-scale and multi-attention model based on Res2Net. Our proposed framework introduces an Adaptive Feature Refinement Pyramid Module (AFRPM) to enhance multi-scale feature extraction, thus improving the accuracy of traffic scene image classification. Additionally, we integrate frequency domain and spatial-channel attention mechanisms to develop recognition capabilities for complex backgrounds, objects of different scales, and local details in traffic scene images. The paper conducts the task of classifying traffic scene images using the Traffic-Net dataset. The experimental results demonstrate that our model achieves an accuracy of 96.88% on this dataset, which is an improvement of approximately 2% compared to the baseline Res2Net network. Furthermore, we validate the effectiveness of the proposed modules through ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
在水一方应助成就幻竹采纳,获得10
4秒前
4秒前
零听完成签到,获得积分10
4秒前
子车茗应助hou2012采纳,获得30
5秒前
轻松的万天完成签到 ,获得积分10
5秒前
tomalan发布了新的文献求助10
5秒前
LK发布了新的文献求助10
8秒前
12秒前
ariaooo完成签到,获得积分10
12秒前
15秒前
18秒前
18秒前
11贾发布了新的文献求助10
18秒前
成就幻竹发布了新的文献求助10
22秒前
HY完成签到 ,获得积分10
24秒前
27秒前
丘比特应助管理想采纳,获得10
29秒前
30秒前
Zhang发布了新的文献求助10
31秒前
chen发布了新的社区帖子
32秒前
32秒前
可爱的函函应助桂源采纳,获得10
32秒前
33秒前
35秒前
充电宝应助白樱恋曲采纳,获得10
35秒前
36秒前
今后应助无辜芷荷采纳,获得10
40秒前
白樱恋曲完成签到,获得积分20
43秒前
李健的小迷弟应助王冰洁采纳,获得10
43秒前
45秒前
46秒前
49秒前
49秒前
52秒前
桂源发布了新的文献求助10
52秒前
云祈发布了新的文献求助10
52秒前
53秒前
54秒前
55秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343244
求助须知:如何正确求助?哪些是违规求助? 2970337
关于积分的说明 8643416
捐赠科研通 2650267
什么是DOI,文献DOI怎么找? 1451220
科研通“疑难数据库(出版商)”最低求助积分说明 672116
邀请新用户注册赠送积分活动 661447