Res2Net-based multi-scale and multi-attention model for traffic scene image classification

计算机科学 稳健性(进化) 人工智能 特征提取 棱锥(几何) 特征(语言学) 模式识别(心理学) 频道(广播) 计算机视觉 数据挖掘 机器学习 计算机网络 生物化学 化学 物理 语言学 哲学 光学 基因
作者
Guanghui Gao,Yining Guo,Lumei Zhou,Li Li,Gang Shi
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (5): e0300017-e0300017
标识
DOI:10.1371/journal.pone.0300017
摘要

With the increasing applications of traffic scene image classification in intelligent transportation systems, there is a growing demand for improved accuracy and robustness in this classification task. However, due to weather conditions, time, lighting variations, and annotation costs, traditional deep learning methods still have limitations in extracting complex traffic scene features and achieving higher recognition accuracy. The previous classification methods for traffic scene images had gaps in multi-scale feature extraction and the combination of frequency domain, spatial, and channel attention. To address these issues, this paper proposes a multi-scale and multi-attention model based on Res2Net. Our proposed framework introduces an Adaptive Feature Refinement Pyramid Module (AFRPM) to enhance multi-scale feature extraction, thus improving the accuracy of traffic scene image classification. Additionally, we integrate frequency domain and spatial-channel attention mechanisms to develop recognition capabilities for complex backgrounds, objects of different scales, and local details in traffic scene images. The paper conducts the task of classifying traffic scene images using the Traffic-Net dataset. The experimental results demonstrate that our model achieves an accuracy of 96.88% on this dataset, which is an improvement of approximately 2% compared to the baseline Res2Net network. Furthermore, we validate the effectiveness of the proposed modules through ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助甜甜麦片采纳,获得30
1秒前
酷炫的项链完成签到,获得积分10
1秒前
3秒前
一个美女发布了新的文献求助10
3秒前
脑洞疼应助小鱼采纳,获得10
4秒前
4秒前
淡定宛白应助Edwyna采纳,获得10
5秒前
6秒前
8秒前
纯真电源发布了新的文献求助10
8秒前
Yanzi_发布了新的文献求助20
8秒前
syy666完成签到,获得积分10
9秒前
9秒前
皮皮怪发布了新的文献求助10
10秒前
坦率的刺猬完成签到,获得积分10
10秒前
12秒前
Cillian完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
MORNING发布了新的文献求助10
13秒前
杨凡完成签到,获得积分10
16秒前
烟花应助孙一采纳,获得10
16秒前
17秒前
17秒前
吴侬软语完成签到 ,获得积分10
17秒前
好久不见完成签到,获得积分20
17秒前
Bake完成签到,获得积分10
17秒前
小鱼发布了新的文献求助10
17秒前
神勇的念云完成签到,获得积分10
17秒前
17秒前
cy发布了新的文献求助10
19秒前
19秒前
19秒前
爆米花应助活力的石头采纳,获得10
20秒前
20秒前
yuan完成签到,获得积分10
20秒前
hfguwn完成签到,获得积分10
22秒前
皮皮怪完成签到,获得积分10
22秒前
星星轨迹发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289383
求助须知:如何正确求助?哪些是违规求助? 4441048
关于积分的说明 13826327
捐赠科研通 4323397
什么是DOI,文献DOI怎么找? 2373160
邀请新用户注册赠送积分活动 1368598
关于科研通互助平台的介绍 1332483