Res2Net-based multi-scale and multi-attention model for traffic scene image classification

计算机科学 稳健性(进化) 人工智能 特征提取 棱锥(几何) 特征(语言学) 模式识别(心理学) 频道(广播) 计算机视觉 数据挖掘 机器学习 计算机网络 生物化学 化学 物理 语言学 哲学 光学 基因
作者
Guanghui Gao,Yining Guo,Lumei Zhou,Li Li,Gang Shi
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (5): e0300017-e0300017
标识
DOI:10.1371/journal.pone.0300017
摘要

With the increasing applications of traffic scene image classification in intelligent transportation systems, there is a growing demand for improved accuracy and robustness in this classification task. However, due to weather conditions, time, lighting variations, and annotation costs, traditional deep learning methods still have limitations in extracting complex traffic scene features and achieving higher recognition accuracy. The previous classification methods for traffic scene images had gaps in multi-scale feature extraction and the combination of frequency domain, spatial, and channel attention. To address these issues, this paper proposes a multi-scale and multi-attention model based on Res2Net. Our proposed framework introduces an Adaptive Feature Refinement Pyramid Module (AFRPM) to enhance multi-scale feature extraction, thus improving the accuracy of traffic scene image classification. Additionally, we integrate frequency domain and spatial-channel attention mechanisms to develop recognition capabilities for complex backgrounds, objects of different scales, and local details in traffic scene images. The paper conducts the task of classifying traffic scene images using the Traffic-Net dataset. The experimental results demonstrate that our model achieves an accuracy of 96.88% on this dataset, which is an improvement of approximately 2% compared to the baseline Res2Net network. Furthermore, we validate the effectiveness of the proposed modules through ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyt发布了新的文献求助10
1秒前
小河青青完成签到,获得积分10
2秒前
wen完成签到,获得积分10
2秒前
2秒前
lucky应助科研通管家采纳,获得10
3秒前
材料人发布了新的文献求助10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
英姑应助明理友琴采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得20
3秒前
QianchengZhao应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
倪侃发布了新的文献求助10
4秒前
ding应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
lululu发布了新的文献求助10
5秒前
腾茹煊发布了新的文献求助10
5秒前
刘文辉完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
悄悄完成签到,获得积分10
8秒前
雪白访云完成签到,获得积分10
8秒前
汉堡包应助洪某盆采纳,获得10
9秒前
刘晓云发布了新的文献求助10
9秒前
9秒前
子南完成签到,获得积分10
10秒前
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125149
求助须知:如何正确求助?哪些是违规求助? 4329133
关于积分的说明 13490086
捐赠科研通 4163894
什么是DOI,文献DOI怎么找? 2282628
邀请新用户注册赠送积分活动 1283777
关于科研通互助平台的介绍 1223019