A hybrid deep reinforcement learning approach for a proactive transshipment of fresh food in the online–offline channel system

强化学习 转运(资讯保安) 钢筋 在线和离线 频道(广播) 计算机科学 人工智能 计算机安全 心理学 计算机网络 操作系统 社会心理学
作者
Junhyeok Lee,Youngchul Shin,Ilkyeong Moon
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:187: 103576-103576 被引量:5
标识
DOI:10.1016/j.tre.2024.103576
摘要

To reduce the waste of fresh foods, one of the e-commerce companies in South Korea utilizes lateral transshipment in the network of online platforms and offline shops, which is called the online–offline channel system (OOCS). Even though the OOCS has achieved success in real practice, there is room for further study on this system with regard to deriving a transshipment policy. For this reason, this study aims to develop a solution approach that could derive a promising policy and analyze the impacts of transshipment in the OOCS. The main contributions are summarized as follows. First, we propose a model to deal with the proactive transshipment of perishable products in the OOCS. In particular, this is the first study that introduces the concept of the heterogeneous shelf life considering different properties of online and offline channels. Second, we develop the hybrid deep reinforcement learning (DRL) approach by combining the soft actor–critic algorithm with two novel acceleration methods. The developed method could obtain a promising policy without assumptions about demand distribution and mitigate computational burdens by reducing action spaces. On a set of experiments carried out on real-world demand data, the transshipment policy derived from the hybrid DRL approach could obtain the best profit compared to existing algorithms. Third, we examine the impacts of transshipment by differing types of demand and varying the unit transshipment cost parameter. We find that transshipment substantially reduces the outdating cost by allowing the offline channel to make good use of the old products that will be discarded in the online channel, which is new to the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光怀亦发布了新的文献求助10
刚刚
汉堡包应助俏皮诺言采纳,获得10
1秒前
向秋完成签到,获得积分10
3秒前
LHP完成签到,获得积分10
4秒前
合适的雁易完成签到,获得积分10
4秒前
阳光怀亦完成签到,获得积分10
5秒前
雨的痕迹发布了新的文献求助10
6秒前
8秒前
茂飞发布了新的文献求助10
10秒前
12秒前
13秒前
或无情发布了新的文献求助10
13秒前
14秒前
14秒前
百草园发布了新的文献求助10
15秒前
20秒前
锡昱完成签到,获得积分10
20秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
NexusExplorer应助务实的犀牛采纳,获得10
26秒前
27秒前
尊敬寒松发布了新的文献求助20
30秒前
辛勤的刺猬完成签到 ,获得积分10
30秒前
小园饼干发布了新的文献求助10
30秒前
璐璇发布了新的文献求助50
30秒前
荀万声完成签到,获得积分10
31秒前
31秒前
风闻发布了新的文献求助10
33秒前
雨的痕迹完成签到,获得积分10
35秒前
南星发布了新的文献求助10
37秒前
38秒前
风闻完成签到,获得积分10
39秒前
42秒前
长情青烟发布了新的文献求助10
42秒前
李健的小迷弟应助de君采纳,获得10
43秒前
xl应助苏苏采纳,获得10
44秒前
犹豫板油关注了科研通微信公众号
44秒前
lihailong发布了新的文献求助10
45秒前
46秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858