Adaptive tetralactam macrocycle based polymers for efficient and rapid removal of organic micropollutants with wide scope

吸附 聚合物 化学 污染物 范围(计算机科学) 环境化学 有机化学 计算机科学 程序设计语言
作者
Yu Qiu,Shan Yu,Song-Meng Wang,Mei-Ling Liu,Shi-Yao Li,Huan Yao,Liu‐Pan Yang,Lili Wang
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:495: 153143-153143 被引量:5
标识
DOI:10.1016/j.cej.2024.153143
摘要

With the rapid urbanization and industrialization of human society, water pollution issues caused by the increasing types and quantities of organic micropollutants have become increasingly severe. It is very urgent but also challenging to develop the rapid and efficient method for water purification with a wide removal scope. Herein, a cross-linked polymer adsorbent was fabricated by adaptive tetralactam macrocycle for rapid and efficient removal of multiple types of organic micropollutants in water, including dyes, pharmaceuticals, pesticides, and hormones. The removal efficiencies for the 20 tested organic micropollutants with diverse structures, sizes, and charges are all larger than 95.9 % and approaching 99.9 %, and most of the adsorption processes were finished within 5 min. The well-preorganized and adaptive cavity of tetralactam macrocycle endows the polymer adsorbent with excellent adsorption performance even in extreme conditions. Moreover, the tetralactam macrocycle-crosslinked polymer adsorbent could be regenerated easily and the performance was maintained after 6 cycles. It is demonstrated that the as-developed polymer has great potential in the removal of various hazardous organic pollutants in water.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丂枧发布了新的文献求助10
刚刚
刚刚
Alicer发布了新的文献求助20
1秒前
janejane发布了新的文献求助10
1秒前
1秒前
我是老大应助陶醉平松采纳,获得10
1秒前
王珊完成签到,获得积分10
2秒前
oxo关注了科研通微信公众号
2秒前
超级李包包完成签到,获得积分10
2秒前
酷酷发布了新的文献求助10
2秒前
2秒前
桐桐应助zhaoxiao采纳,获得10
3秒前
Akim应助xiaowang采纳,获得10
3秒前
不住完成签到,获得积分20
3秒前
zsc668完成签到 ,获得积分10
3秒前
3秒前
liverbool发布了新的文献求助10
4秒前
神说应助ffff采纳,获得10
4秒前
kx发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
5秒前
情怀应助一只耳采纳,获得10
5秒前
5秒前
无花果应助科研进化中采纳,获得10
6秒前
cnulee完成签到,获得积分10
6秒前
科研通AI5应助化羽归尘采纳,获得10
6秒前
沉默的小天鹅完成签到,获得积分10
6秒前
zhouting发布了新的文献求助10
6秒前
7秒前
研友_VZG7GZ应助暖阳采纳,获得10
7秒前
wanci应助德德采纳,获得10
8秒前
Wacky发布了新的文献求助10
8秒前
神勇猕猴桃完成签到,获得积分10
9秒前
所所应助天地侵略者采纳,获得10
9秒前
Ehgnix发布了新的文献求助10
9秒前
张丫丫发布了新的文献求助10
9秒前
9秒前
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735180
求助须知:如何正确求助?哪些是违规求助? 3279071
关于积分的说明 10012998
捐赠科研通 2995649
什么是DOI,文献DOI怎么找? 1643610
邀请新用户注册赠送积分活动 781338
科研通“疑难数据库(出版商)”最低求助积分说明 749369