Identifying Oral Carcinoma from Histopathological Image using Unsupervised Nuclear Segmentation

人工智能 图像分割 计算机科学 分割 图像(数学) 模式识别(心理学) 计算机视觉
作者
Rahul Shukla,Bhavesh Ajwani,Shubham Sharma,Debanjan Das
标识
DOI:10.1109/i2ct61223.2024.10543340
摘要

Oral Cancer, a worldwide health concern, highlights the urgent need for accurate and swift detection and cure. Current diagnosing strategies primarily involve pathologists for analyzing tissue biopsy samples, a method that is time-consuming and heavily driven by pathologists' experience. To address these drawbacks, this study proposes a novel technique that incorporates machine vision for cancer detection, aiming to enhance diagnostic accuracy. Given the intricate nature of histopathological images, we adopt an unsupervised approach for cancer detection, in contrast to traditional deep learning or supervised approaches. The nucleus in a cancerous tissue biopsy image is identified as the region of interest (ROI), due to its key characteristics and form. We extract the ROI using K-means clustering augmented with a thresholding technique and apply a novel classification method for the final stage of cancer detection. Our proposed model achieved an accuracy of approximately 97.28%, with a closely following validation accuracy of roughly 96.34% making it more efficient and reliable at cancer detection. These results underscore the effectiveness of our two-stage process starting with image segmentation followed by CNN-based binary classification for accurately detecting cancer cells. They reveal improved speed and precision in identifying cancerous tissues, thus offering a promising pathway for enhancing the efficacy and efficiency of oral cancer detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助leesoon采纳,获得10
1秒前
烂漫的飞松完成签到,获得积分10
1秒前
1秒前
支妙完成签到,获得积分10
1秒前
asdasd发布了新的文献求助10
2秒前
汉堡包应助韩hqf采纳,获得10
2秒前
研友_VZG7GZ应助ayayaya采纳,获得10
2秒前
李健的小迷弟应助苦哈哈采纳,获得10
3秒前
4秒前
开放灵竹发布了新的文献求助10
4秒前
一介书生完成签到,获得积分10
4秒前
机智仙人掌完成签到,获得积分10
4秒前
4秒前
L112233发布了新的文献求助10
6秒前
JYH12138发布了新的文献求助10
6秒前
大有阳光发布了新的文献求助10
6秒前
6秒前
无风海发布了新的文献求助10
7秒前
hss完成签到,获得积分10
8秒前
云澈发布了新的文献求助10
8秒前
8秒前
CR7应助就晚安喽采纳,获得20
8秒前
9秒前
Zhao完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
英姑应助娇娇采纳,获得10
10秒前
64658应助可积采纳,获得10
11秒前
谜呀发布了新的文献求助10
11秒前
喽喽发布了新的文献求助30
12秒前
13秒前
13秒前
在荷兰看郁金香的木鱼完成签到,获得积分10
14秒前
lagrange发布了新的文献求助10
14秒前
请你吃折耳根完成签到,获得积分10
14秒前
大有阳光完成签到,获得积分10
14秒前
14秒前
搜集达人应助无风海采纳,获得10
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978729
求助须知:如何正确求助?哪些是违规求助? 3522741
关于积分的说明 11214658
捐赠科研通 3260224
什么是DOI,文献DOI怎么找? 1799815
邀请新用户注册赠送积分活动 878676
科研通“疑难数据库(出版商)”最低求助积分说明 807052