Design of Low Power High-Speed LMS Adaptive Filter For Biomedical Applications

自适应滤波器 计算机科学 功率(物理) 滤波器(信号处理) 电子工程 工程类 物理 算法 量子力学 计算机视觉
作者
Pradnya Zode,Veena M. B,Pravin Zode
标识
DOI:10.1109/i2ct61223.2024.10544054
摘要

The COVID-19 pandemic continues to impact communities worldwide. Patients suffered from COVID-19 are at increased risk of a broad range of cardiovascular disorders. An electrocardiogram (ECG) is a simple test which graphically represents the heart's rhythm and the electrical activity of the heart during a cardiac cycle. Therefore, precise detection of electrocardiogram signals is the elementary step in clinical diagnostics. This research paper presents an implementation of an adaptive Least Mean Squared (LMS) digital filter for trustworthy ECG signal detection. The work aims at Multiple Constant Multiplication (MCM) operations and Common Sub-expression Elimination (CSE) techniques to improve precision and reduce power consumption. The filter is modeled using Verilog hardware descriptive language and implemented on Xilinx ML605 FPGA (XC6VLX240T1FFG1156 FPGA) Embedded Development Kit. Comparison with the direct implementation of LMS filter DFG shows that the number of employed FPGA LUTs is reduced by 65.53%, power consumption is reduced by 55.98%, frequency of operation of the device is increased by 52.88%, and the throughput is increased by 159.14%. The results show reduced power consumption and corrected accuracy, suggesting that the proposed method is capable of accurately detecting ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
小松完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助QXR采纳,获得10
5秒前
thy完成签到 ,获得积分10
6秒前
烟花应助左友铭采纳,获得10
6秒前
多情弼发布了新的文献求助10
6秒前
kgrvlm完成签到 ,获得积分10
7秒前
小耗子发布了新的文献求助10
8秒前
今后应助hedy采纳,获得10
8秒前
9秒前
fdxs发布了新的文献求助30
9秒前
缓冲间完成签到,获得积分10
9秒前
友好的小虾米完成签到,获得积分10
10秒前
Lucas应助甜甜寄凡采纳,获得10
11秒前
11秒前
12秒前
12秒前
14秒前
nyfz2002完成签到,获得积分10
15秒前
16秒前
充电宝应助yoyo采纳,获得10
17秒前
领导范儿应助xiguan采纳,获得30
17秒前
17秒前
Cloud完成签到,获得积分10
18秒前
19秒前
缓冲间发布了新的文献求助10
19秒前
左友铭发布了新的文献求助10
20秒前
楚奇完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
大模型应助Qvby3采纳,获得10
21秒前
酷波er应助jasar采纳,获得10
21秒前
21秒前
22秒前
23秒前
冷傲的迎南完成签到 ,获得积分10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237