Forecasting daily PM2.5 concentrations in Wuhan with a spatial-autocorrelation-based long short-term memory model

自相关 期限(时间) 环境科学 气象学 空间分析 气候学 地理 统计 数学 地质学 遥感 物理 量子力学
作者
Zhifei Liu,C. Ge,Kang Zheng,Shuai Bao,Yide Cui,Yirong Yuan,Yixuan Zhang
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:331: 120605-120605 被引量:3
标识
DOI:10.1016/j.atmosenv.2024.120605
摘要

Accurate daily air pollution forecasts play a pivotal role in enabling government to implement timely emergency responses and helping alert individuals sensitive to air pollution to take preventive measures. The atmospheric continuity fosters spatial correlations among air pollutants at various locations, which is a factor frequently overlooked in contemporary research focused on harnessing data-driven models for air quality prediction. Therefore, this study proposed a Spatial-Autocorrelation-based Long Short-Term Memory (SALSTM) model for the daily forecasting in Wuhan, Hubei Province, China. Using a multivariate prediction approach with daily air pollution data and meteorological data from Wuhan, as well as air pollution data from surrounding cities, from 2021 to 2022 as input, the model was applied for projecting the daily PM2.5 for Wuhan during the year 2023 and conducting accuracy cross-validation. The results were compared with a univariate prediction approach utilizing the Autoregressive Integrated Moving Average (ARIMA) model and the original Long Short-Term Memory (LSTM) model. Furthermore, this study utilized Dynamic Time Warping (DTW) for feature selection in multivariate prediction, comparing the accuracy of prediction results before and after feature selection. Experimental results indicated that the SALSTM model, incorporating the DTW method, achieved a Root Mean Squared Error (RMSE) of 6.92 μg/m3, a Mean Absolute Error (MAE) of 4.07 μg/m3 and a coefficient of determination (R2) of 0.95. Compared to the univariate forecasting method, the three accuracy metrics RMSE, MAE, and R2 have improved by 54.74%, 58.68%, and 37.68%, respectively. In comparison with the original LSTM, the improvement is 23.79%, 30.90%, and 4.40%. In conclusion, the SALSTM model established in this study demonstrates accurate daily forecasting of PM2.5 concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN发布了新的文献求助10
刚刚
淡然凤完成签到,获得积分10
刚刚
大模型应助小比熊采纳,获得10
刚刚
情怀应助严昌采纳,获得10
刚刚
1秒前
美好初晴发布了新的文献求助10
2秒前
我要发一刊完成签到 ,获得积分10
2秒前
小慧儿完成签到 ,获得积分10
3秒前
3秒前
Mico发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
6666应助小白采纳,获得10
4秒前
田様应助谨慎的寒松采纳,获得10
5秒前
科目三应助谨慎的寒松采纳,获得10
5秒前
丘比特应助谨慎的寒松采纳,获得30
5秒前
情怀应助谨慎的寒松采纳,获得10
6秒前
Orange应助谨慎的寒松采纳,获得10
6秒前
酷波er应助谨慎的寒松采纳,获得10
6秒前
6秒前
所所应助谨慎的寒松采纳,获得10
6秒前
情怀应助谨慎的寒松采纳,获得10
6秒前
上官若男应助谨慎的寒松采纳,获得10
6秒前
科研通AI6.1应助翟翟采纳,获得10
6秒前
科研通AI6.1应助翟翟采纳,获得10
6秒前
滕祥给滕祥的求助进行了留言
7秒前
7秒前
killer发布了新的文献求助10
7秒前
8秒前
8秒前
YM完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
阿辉发布了新的文献求助10
10秒前
英姑应助shm123321采纳,获得10
10秒前
11秒前
11秒前
rocky发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108