已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Forecasting daily PM2.5 concentrations in Wuhan with a spatial-autocorrelation-based long short-term memory model

自相关 期限(时间) 环境科学 气象学 空间分析 气候学 地理 统计 数学 地质学 遥感 量子力学 物理
作者
Zhifei Liu,C. Ge,Kang Zheng,Shuai Bao,Yide Cui,Yirong Yuan,Yixuan Zhang
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:331: 120605-120605 被引量:3
标识
DOI:10.1016/j.atmosenv.2024.120605
摘要

Accurate daily air pollution forecasts play a pivotal role in enabling government to implement timely emergency responses and helping alert individuals sensitive to air pollution to take preventive measures. The atmospheric continuity fosters spatial correlations among air pollutants at various locations, which is a factor frequently overlooked in contemporary research focused on harnessing data-driven models for air quality prediction. Therefore, this study proposed a Spatial-Autocorrelation-based Long Short-Term Memory (SALSTM) model for the daily forecasting in Wuhan, Hubei Province, China. Using a multivariate prediction approach with daily air pollution data and meteorological data from Wuhan, as well as air pollution data from surrounding cities, from 2021 to 2022 as input, the model was applied for projecting the daily PM2.5 for Wuhan during the year 2023 and conducting accuracy cross-validation. The results were compared with a univariate prediction approach utilizing the Autoregressive Integrated Moving Average (ARIMA) model and the original Long Short-Term Memory (LSTM) model. Furthermore, this study utilized Dynamic Time Warping (DTW) for feature selection in multivariate prediction, comparing the accuracy of prediction results before and after feature selection. Experimental results indicated that the SALSTM model, incorporating the DTW method, achieved a Root Mean Squared Error (RMSE) of 6.92 μg/m3, a Mean Absolute Error (MAE) of 4.07 μg/m3 and a coefficient of determination (R2) of 0.95. Compared to the univariate forecasting method, the three accuracy metrics RMSE, MAE, and R2 have improved by 54.74%, 58.68%, and 37.68%, respectively. In comparison with the original LSTM, the improvement is 23.79%, 30.90%, and 4.40%. In conclusion, the SALSTM model established in this study demonstrates accurate daily forecasting of PM2.5 concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小旭呀完成签到,获得积分10
刚刚
敏感蓝天完成签到,获得积分10
刚刚
1秒前
2秒前
斯文的慕儿完成签到 ,获得积分10
4秒前
背后的语海完成签到 ,获得积分10
4秒前
Akim应助Konodioda采纳,获得10
5秒前
君寻完成签到 ,获得积分10
5秒前
5秒前
逆天了呀完成签到,获得积分10
6秒前
眼睛大的初之完成签到 ,获得积分10
6秒前
hu发布了新的文献求助10
7秒前
7秒前
大个应助15608205856采纳,获得10
7秒前
陈陈陈发布了新的文献求助10
8秒前
丰富靖琪完成签到 ,获得积分10
8秒前
咕噜发布了新的文献求助10
9秒前
wangxiaobin完成签到 ,获得积分10
9秒前
10秒前
安详向薇完成签到,获得积分10
11秒前
11秒前
12秒前
稳重的白筠完成签到 ,获得积分10
14秒前
15秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
15秒前
fang发布了新的文献求助10
15秒前
芋泥发布了新的文献求助10
16秒前
16秒前
jl发布了新的文献求助10
16秒前
wanci应助研友_宋文昊采纳,获得10
17秒前
彭于晏应助研友_宋文昊采纳,获得10
17秒前
multimodal完成签到 ,获得积分10
17秒前
cnspower应助研友_宋文昊采纳,获得30
17秒前
17秒前
19秒前
思源应助白茶泡泡球采纳,获得10
19秒前
希望天下0贩的0应助merry采纳,获得10
19秒前
19秒前
小冉完成签到 ,获得积分10
20秒前
孙晨维发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747