Forecasting daily PM2.5 concentrations in Wuhan with a spatial-autocorrelation-based long short-term memory model

自相关 期限(时间) 环境科学 气象学 空间分析 气候学 地理 统计 数学 地质学 遥感 量子力学 物理
作者
Zhifei Liu,C. Ge,Kang Zheng,Shuai Bao,Yide Cui,Yirong Yuan,Yixuan Zhang
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:331: 120605-120605 被引量:3
标识
DOI:10.1016/j.atmosenv.2024.120605
摘要

Accurate daily air pollution forecasts play a pivotal role in enabling government to implement timely emergency responses and helping alert individuals sensitive to air pollution to take preventive measures. The atmospheric continuity fosters spatial correlations among air pollutants at various locations, which is a factor frequently overlooked in contemporary research focused on harnessing data-driven models for air quality prediction. Therefore, this study proposed a Spatial-Autocorrelation-based Long Short-Term Memory (SALSTM) model for the daily forecasting in Wuhan, Hubei Province, China. Using a multivariate prediction approach with daily air pollution data and meteorological data from Wuhan, as well as air pollution data from surrounding cities, from 2021 to 2022 as input, the model was applied for projecting the daily PM2.5 for Wuhan during the year 2023 and conducting accuracy cross-validation. The results were compared with a univariate prediction approach utilizing the Autoregressive Integrated Moving Average (ARIMA) model and the original Long Short-Term Memory (LSTM) model. Furthermore, this study utilized Dynamic Time Warping (DTW) for feature selection in multivariate prediction, comparing the accuracy of prediction results before and after feature selection. Experimental results indicated that the SALSTM model, incorporating the DTW method, achieved a Root Mean Squared Error (RMSE) of 6.92 μg/m3, a Mean Absolute Error (MAE) of 4.07 μg/m3 and a coefficient of determination (R2) of 0.95. Compared to the univariate forecasting method, the three accuracy metrics RMSE, MAE, and R2 have improved by 54.74%, 58.68%, and 37.68%, respectively. In comparison with the original LSTM, the improvement is 23.79%, 30.90%, and 4.40%. In conclusion, the SALSTM model established in this study demonstrates accurate daily forecasting of PM2.5 concentrations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
liuaoo完成签到,获得积分20
刚刚
李健的小迷弟应助kongbaige采纳,获得10
1秒前
邹万恶发布了新的文献求助10
1秒前
搞怪冷之完成签到 ,获得积分10
1秒前
swify339完成签到,获得积分10
2秒前
typhoon完成签到,获得积分10
2秒前
sugar完成签到,获得积分10
2秒前
lily完成签到,获得积分10
2秒前
自由寄柔完成签到,获得积分10
2秒前
3秒前
Zx_1993应助miao采纳,获得20
3秒前
欧阳蛋蛋鸡完成签到,获得积分10
3秒前
ZJPPPP发布了新的文献求助10
3秒前
cij123完成签到,获得积分10
3秒前
独特的忆彤完成签到 ,获得积分10
4秒前
mc关闭了mc文献求助
4秒前
leisure应助科研通管家采纳,获得10
4秒前
VDC应助科研通管家采纳,获得30
4秒前
liuaoo发布了新的文献求助10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
小青椒应助科研通管家采纳,获得10
5秒前
求助人员应助科研通管家采纳,获得10
5秒前
5秒前
大模型应助科研通管家采纳,获得10
5秒前
自由寄柔发布了新的文献求助30
5秒前
wills应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
Jasper应助蕾蕾大酱采纳,获得10
6秒前
李健的粉丝团团长应助周_采纳,获得10
6秒前
独特听芹完成签到,获得积分10
6秒前
Tan完成签到 ,获得积分10
6秒前
7秒前
8秒前
123发布了新的文献求助10
8秒前
华青ww完成签到,获得积分10
8秒前
王晓朋完成签到,获得积分10
8秒前
agd122完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006