Forecasting daily PM2.5 concentrations in Wuhan with a spatial-autocorrelation-based long short-term memory model

自相关 期限(时间) 环境科学 气象学 空间分析 气候学 地理 统计 数学 地质学 遥感 量子力学 物理
作者
Zhifei Liu,C. Ge,Kang Zheng,Shuai Bao,Yide Cui,Yirong Yuan,Yixuan Zhang
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:331: 120605-120605 被引量:3
标识
DOI:10.1016/j.atmosenv.2024.120605
摘要

Accurate daily air pollution forecasts play a pivotal role in enabling government to implement timely emergency responses and helping alert individuals sensitive to air pollution to take preventive measures. The atmospheric continuity fosters spatial correlations among air pollutants at various locations, which is a factor frequently overlooked in contemporary research focused on harnessing data-driven models for air quality prediction. Therefore, this study proposed a Spatial-Autocorrelation-based Long Short-Term Memory (SALSTM) model for the daily forecasting in Wuhan, Hubei Province, China. Using a multivariate prediction approach with daily air pollution data and meteorological data from Wuhan, as well as air pollution data from surrounding cities, from 2021 to 2022 as input, the model was applied for projecting the daily PM2.5 for Wuhan during the year 2023 and conducting accuracy cross-validation. The results were compared with a univariate prediction approach utilizing the Autoregressive Integrated Moving Average (ARIMA) model and the original Long Short-Term Memory (LSTM) model. Furthermore, this study utilized Dynamic Time Warping (DTW) for feature selection in multivariate prediction, comparing the accuracy of prediction results before and after feature selection. Experimental results indicated that the SALSTM model, incorporating the DTW method, achieved a Root Mean Squared Error (RMSE) of 6.92 μg/m3, a Mean Absolute Error (MAE) of 4.07 μg/m3 and a coefficient of determination (R2) of 0.95. Compared to the univariate forecasting method, the three accuracy metrics RMSE, MAE, and R2 have improved by 54.74%, 58.68%, and 37.68%, respectively. In comparison with the original LSTM, the improvement is 23.79%, 30.90%, and 4.40%. In conclusion, the SALSTM model established in this study demonstrates accurate daily forecasting of PM2.5 concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
丽丽发布了新的文献求助10
1秒前
深情安青应助hhh采纳,获得30
1秒前
积极的秀完成签到,获得积分20
1秒前
元白发布了新的文献求助10
2秒前
仇文琪发布了新的文献求助10
2秒前
2秒前
阿狸在睡觉完成签到,获得积分10
3秒前
活泼又晴完成签到,获得积分10
5秒前
haha完成签到,获得积分10
5秒前
6秒前
7秒前
邬梦寒完成签到,获得积分10
7秒前
Gzh_NJ发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
无花果应助张宇锋采纳,获得10
9秒前
SciGPT应助整齐千柳采纳,获得10
11秒前
田様应助张张采纳,获得10
11秒前
科研通AI6应助wyf采纳,获得10
11秒前
华仔应助聪明的青荷采纳,获得10
12秒前
12秒前
12秒前
13秒前
小杨关注了科研通微信公众号
13秒前
文静修杰发布了新的文献求助10
13秒前
15秒前
15秒前
wang_dong发布了新的文献求助10
15秒前
16秒前
科研通AI6应助丽丽采纳,获得10
16秒前
17秒前
研友_VZG7GZ应助aaa采纳,获得10
18秒前
可爱的函函应助ewmmel采纳,获得10
18秒前
19秒前
JJ发布了新的文献求助10
19秒前
刘老板发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355566
求助须知:如何正确求助?哪些是违规求助? 4487492
关于积分的说明 13970307
捐赠科研通 4388192
什么是DOI,文献DOI怎么找? 2410927
邀请新用户注册赠送积分活动 1403459
关于科研通互助平台的介绍 1376974