带隙
点反射
混合功能
凝聚态物理
Atom(片上系统)
反演(地质)
对称(几何)
物理
铜
不变(物理)
理论物理学
密度泛函理论
材料科学
原子物理学
量子力学
计算机科学
数学
几何学
冶金
古生物学
构造盆地
生物
嵌入式系统
作者
Jiale Shen,Haitao Liu,Y. Li
摘要
Gap opening remains elusive in copper chalcogenides (Cu2X, X = S, Se, and Te), not least because Hubbard + U, hybrid functional, and GW methods have also failed. In this work, we elucidate that their failure originates from a severe underestimation of the 4s–3d orbital splitting of the Cu atom, which leads to a band-order inversion in the presence of an anionic crystal field. As a result, the Fermi energy is pinned due to symmetry, yielding an invariant zero gap. Utilizing the hybrid pseudopotentials to correct the underestimation on the atomic side opens up gaps of experimental magnitude in Cu2X, suggesting their predominantly electronic nature. Our work not only clarifies the debate about the Cu2X gap but also provides a way to identify which of the different methods really captures the physical essence and which is the result of error cancellation.
科研通智能强力驱动
Strongly Powered by AbleSci AI