STC-PSSA: A New Model of Traffic Flow Forecasting Based on Spatiotemporal Convolution and Probabilistic Sparse Self-Attention

概率逻辑 卷积(计算机科学) 计算机科学 流量(计算机网络) 流量(数学) 统计模型 运输工程 运筹学 人工智能 工程类 数学 计算机安全 几何学 人工神经网络
作者
Hong Zhang,Linbiao Chen,Xijun Zhang,Jie Cao
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241252146
摘要

Traffic flow forecasting is the foundation of the dynamic control and application of intelligent transportation systems (ITS). It is also of significant practical value in alleviating road congestion. Given the periodic and dynamic changes in traffic flow and the spatiotemporal coupling interaction of complex road networks, traffic flow forecasting is challenging and rarely yields satisfactory prediction results. To capture the dynamic spatiotemporal characteristics of traffic flow, a new model of traffic flow forecasting based on spatiotemporal convolution and probabilistic sparse self-attention (STC-PSSA) is proposed. It consists of a spatiotemporal graph convolution network (ST-GCN) module, a spatiotemporal convolution module (ST-Conv), and a probabilistic sparse attention module (PSSA). ST-GCN consists of the gated temporal convolutional network (G-TCN) and the graph convolution network (GCN), which are used to capture the temporal dependence and spatial correlation of the traffic flow, respectively. Multiple ST-GCNs are stacked to handle spatial features at various time levels. The ST-Conv captures intricate temporal dependence at the same location and dynamic spatial features at neighboring locations simultaneously. The PSSA combines dynamic spatiotemporal features and performs long-term forecasting efficiently. The experimental results demonstrate that the STC-PSSA model can accurately extract the dynamic spatiotemporal characteristics of traffic flow and outperforms the popular baseline methods in forecasting accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
1秒前
爆米花应助Lucky采纳,获得10
3秒前
ccc1993完成签到,获得积分10
5秒前
Orange应助albertxin采纳,获得10
6秒前
香蕉觅云应助淮山五加皮采纳,获得10
13秒前
帅上天发布了新的文献求助10
15秒前
17秒前
20秒前
21秒前
wsx关注了科研通微信公众号
21秒前
彭于晏应助环糊精采纳,获得10
23秒前
25秒前
25秒前
平常的友桃完成签到,获得积分10
25秒前
小学猹发布了新的文献求助10
26秒前
曾经刺猬完成签到,获得积分10
29秒前
Hello应助科研通管家采纳,获得10
30秒前
Ava应助科研通管家采纳,获得100
30秒前
Lucas应助科研通管家采纳,获得10
31秒前
田様应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
小芳应助科研通管家采纳,获得10
31秒前
31秒前
登登等灯灯完成签到,获得积分10
34秒前
35秒前
QiiQ发布了新的文献求助10
35秒前
37秒前
dasen发布了新的文献求助10
37秒前
39秒前
39秒前
39秒前
小妮子发布了新的文献求助10
40秒前
啦啦啦完成签到,获得积分10
40秒前
41秒前
老王完成签到,获得积分10
42秒前
传奇3应助zjy采纳,获得30
43秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346174
求助须知:如何正确求助?哪些是违规求助? 2972939
关于积分的说明 8657179
捐赠科研通 2653379
什么是DOI,文献DOI怎么找? 1453124
科研通“疑难数据库(出版商)”最低求助积分说明 672752
邀请新用户注册赠送积分活动 662614