Future of neurocritical care: Integrating neurophysics, multimodal monitoring, and machine learning

神经重症监护 医学 脑自动调节 皮质电图 颅内压 重症监护医学 模态(人机交互) 持续监测 微透析 重症监护室 模式 经颅多普勒 人工智能 机器学习 脑电图 医学物理学 计算机科学 血压 麻醉 内科学 自动调节 社会科学 运营管理 精神科 社会学 经济 中枢神经系统
作者
Bahadar S. Srichawla
出处
期刊:World journal of critical care medicine [Baishideng Publishing Group Co (World Journal of Critical Care Medicine)]
卷期号:13 (2)
标识
DOI:10.5492/wjccm.v13.i2.91397
摘要

Multimodal monitoring (MMM) in the intensive care unit (ICU) has become increasingly sophisticated with the integration of neurophysical principles. However, the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes. This manuscript reviewed current neuromonitoring tools, focusing on intracranial pressure, cerebral electrical activity, metabolism, and invasive and noninvasive autoregulation monitoring. In addition, the integration of advanced machine learning and data science tools within the ICU were discussed. Invasive monitoring includes analysis of intracranial pressure waveforms, jugular venous oximetry, monitoring of brain tissue oxygenation, thermal diffusion flowmetry, electrocorticography, depth electroencephalography, and cerebral microdialysis. Noninvasive measures include transcranial Doppler, tympanic membrane displacement, near-infrared spectroscopy, optic nerve sheath diameter, positron emission tomography, and systemic hemodynamic monitoring including heart rate variability analysis. The neurophysical basis and clinical relevance of each method within the ICU setting were examined. Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools, helping clinicians make more accurate and timely decisions. These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies. MMM, grounded in neurophysics, offers a more nuanced understanding of cerebral physiology and disease in the ICU. Although each modality has its strengths and limitations, its integrated use, especially in combination with machine learning algorithms, can offer invaluable information for individualized patient care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助施梦得采纳,获得30
1秒前
2秒前
amazing39发布了新的文献求助10
3秒前
fearlessji发布了新的文献求助10
3秒前
Hello应助pipi采纳,获得10
3秒前
5秒前
忧郁小懒猪应助FYY采纳,获得10
6秒前
上官若男应助Elvira采纳,获得10
7秒前
传奇3应助尼可刹米洛贝林采纳,获得10
7秒前
9秒前
9秒前
xu1995给xu1995的求助进行了留言
10秒前
施梦得完成签到,获得积分10
10秒前
小李博士发布了新的文献求助10
12秒前
英俊的铭应助yanzu采纳,获得10
12秒前
小小西瓜萝卜青菜完成签到,获得积分10
12秒前
13秒前
施梦得发布了新的文献求助30
13秒前
14秒前
水萝卜完成签到 ,获得积分10
15秒前
852应助科研通管家采纳,获得10
15秒前
15秒前
curtisness应助科研通管家采纳,获得10
15秒前
彭于晏应助科研通管家采纳,获得10
15秒前
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
小马甲应助科研通管家采纳,获得10
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
乐乐应助科研通管家采纳,获得10
16秒前
所所应助科研通管家采纳,获得30
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
16秒前
17秒前
wzxx发布了新的文献求助10
17秒前
冰冰完成签到,获得积分10
17秒前
酷波er应助孤傲的静脉采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3351364
求助须知:如何正确求助?哪些是违规求助? 2976842
关于积分的说明 8676836
捐赠科研通 2657999
什么是DOI,文献DOI怎么找? 1455355
科研通“疑难数据库(出版商)”最低求助积分说明 673836
邀请新用户注册赠送积分活动 664315