亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

More Accurately Estimating Aboveground Biomass in Tropical Forests With Complex Forest Structures and Regions of High‐Aboveground Biomass

环境科学 遥感 均方误差 森林资源清查 统计 数学 地理 森林经营 农林复合经营
作者
Ying Su,Matteo Mura,Xiaoman Zheng,Qi Chen,Xiaohua Wei,Yue Qiu,Li Mei,Yin Ren
出处
期刊:Journal Of Geophysical Research: Biogeosciences [Wiley]
卷期号:129 (6)
标识
DOI:10.1029/2023jg007864
摘要

Abstract Accurately estimating aboveground biomass (AGB) in tropical forests is vital for managing the threats posed by deforestation, degradation, and climate change. However, challenges persist in accurately estimating AGB in high AGB regions. This study aims to accurately estimate the AGB of regions with high AGB by using spatial statistical analyses based on AGB estimates made by machine‐learning fusion of multisource data. We hypothesize that incorporating dominant auxiliary factors in the analysis increases the estimation accuracy. This study focuses on tropical forests located in Longyan, Fujian Province, China, covering an area of 19,028 km 2 . Multisource data are used, including airborne laser scanning, the Shuttle Radar Topography Mission digital elevation model, the Landsat Operational Land Imager, and the National Forest Inventory. Based on GeogDetector's spatial covariance matrix and the spatial similarity principle, we identify key auxiliary factors (dominant tree species, canopy closure, and herbaceous cover) and investigated how auxiliary variables can improve estimation accuracy. Empirical Bayesian kriging regression prediction introduces the main auxiliary factors to refine AGB estimates. These refinements significantly enhance the accuracy of AGB estimates, particularly for high AGB, resulting in a 0.1 increase in R 2 , a 7.0% reduction in root mean square error, a 13.5% reduction in mean square error, and a 6.6% reduction in mean absolute error when compared with the AGB estimates obtained by using machine learning to fuse multisource data. Thus, incorporating spatial statistical analysis into the integration of multisource data and machine learning for AGB estimation can enhance the accuracy of high‐AGB estimates in intricate forest structures, resulting in precise AGB maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI的李完成签到 ,获得积分10
3秒前
4秒前
西瓜二郎发布了新的文献求助10
4秒前
4秒前
小周完成签到,获得积分20
12秒前
Y_完成签到 ,获得积分10
17秒前
17秒前
ckb0901完成签到,获得积分10
19秒前
清爽冬莲完成签到 ,获得积分10
22秒前
shuhaha完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
追三完成签到 ,获得积分10
27秒前
alilu发布了新的文献求助10
30秒前
eye发布了新的文献求助10
31秒前
Zirong发布了新的文献求助10
31秒前
叶子完成签到,获得积分10
33秒前
35秒前
学不完了完成签到 ,获得积分10
36秒前
酷波er应助西瓜二郎采纳,获得10
41秒前
天元神尊完成签到 ,获得积分10
51秒前
谨慎的咖啡豆完成签到,获得积分10
1分钟前
陈文文完成签到 ,获得积分10
1分钟前
1分钟前
Alex完成签到,获得积分0
1分钟前
xy完成签到 ,获得积分10
1分钟前
1分钟前
英俊的铭应助秋分采纳,获得10
1分钟前
粥粥完成签到 ,获得积分10
1分钟前
路路完成签到 ,获得积分10
1分钟前
关我屁事完成签到 ,获得积分10
1分钟前
Jasper应助jitianxing采纳,获得10
1分钟前
1分钟前
西格玛完成签到 ,获得积分20
1分钟前
2分钟前
2分钟前
2分钟前
西格玛关注了科研通微信公众号
2分钟前
2分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965582
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245330
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874110
科研通“疑难数据库(出版商)”最低求助积分说明 804176