More Accurately Estimating Aboveground Biomass in Tropical Forests With Complex Forest Structures and Regions of High‐Aboveground Biomass

环境科学 遥感 均方误差 森林资源清查 统计 数学 地理 森林经营 农林复合经营
作者
Ying Su,Matteo Mura,Xiaoman Zheng,Qi Chen,Xiaohua Wei,Yue Qiu,Li Mei,Yin Ren
出处
期刊:Journal Of Geophysical Research: Biogeosciences [Wiley]
卷期号:129 (6)
标识
DOI:10.1029/2023jg007864
摘要

Abstract Accurately estimating aboveground biomass (AGB) in tropical forests is vital for managing the threats posed by deforestation, degradation, and climate change. However, challenges persist in accurately estimating AGB in high AGB regions. This study aims to accurately estimate the AGB of regions with high AGB by using spatial statistical analyses based on AGB estimates made by machine‐learning fusion of multisource data. We hypothesize that incorporating dominant auxiliary factors in the analysis increases the estimation accuracy. This study focuses on tropical forests located in Longyan, Fujian Province, China, covering an area of 19,028 km 2 . Multisource data are used, including airborne laser scanning, the Shuttle Radar Topography Mission digital elevation model, the Landsat Operational Land Imager, and the National Forest Inventory. Based on GeogDetector's spatial covariance matrix and the spatial similarity principle, we identify key auxiliary factors (dominant tree species, canopy closure, and herbaceous cover) and investigated how auxiliary variables can improve estimation accuracy. Empirical Bayesian kriging regression prediction introduces the main auxiliary factors to refine AGB estimates. These refinements significantly enhance the accuracy of AGB estimates, particularly for high AGB, resulting in a 0.1 increase in R 2 , a 7.0% reduction in root mean square error, a 13.5% reduction in mean square error, and a 6.6% reduction in mean absolute error when compared with the AGB estimates obtained by using machine learning to fuse multisource data. Thus, incorporating spatial statistical analysis into the integration of multisource data and machine learning for AGB estimation can enhance the accuracy of high‐AGB estimates in intricate forest structures, resulting in precise AGB maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意的向日葵完成签到,获得积分10
1秒前
Hh完成签到,获得积分10
2秒前
黄青青完成签到,获得积分10
2秒前
2秒前
风为裳完成签到,获得积分10
3秒前
小鱼要变咸完成签到,获得积分10
4秒前
yiryir完成签到 ,获得积分10
4秒前
aaqw_8完成签到,获得积分10
4秒前
4秒前
AW完成签到,获得积分10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得30
5秒前
misa完成签到 ,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
zz应助科研通管家采纳,获得10
6秒前
好困应助科研通管家采纳,获得10
6秒前
w2503完成签到,获得积分10
6秒前
fuxiao完成签到 ,获得积分10
6秒前
找文献呢完成签到,获得积分10
7秒前
温水煮青蛙完成签到 ,获得积分10
8秒前
顺风顺水顺财神完成签到 ,获得积分10
9秒前
激动的士萧完成签到,获得积分10
10秒前
10秒前
yzl科研爱我完成签到,获得积分10
10秒前
Hollow完成签到,获得积分10
10秒前
Dailei完成签到,获得积分10
10秒前
122完成签到,获得积分10
11秒前
11秒前
00完成签到 ,获得积分10
11秒前
郝宝真发布了新的文献求助10
12秒前
12秒前
JL完成签到 ,获得积分10
12秒前
chen完成签到,获得积分10
14秒前
15秒前
哈利波特完成签到,获得积分10
15秒前
orixero应助shan采纳,获得10
16秒前
高晓澍完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134083
求助须知:如何正确求助?哪些是违规求助? 2784918
关于积分的说明 7769341
捐赠科研通 2440444
什么是DOI,文献DOI怎么找? 1297415
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792