清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fatigue Detection System for Extracting Driver's Eye Features

计算机科学 人工智能 计算机视觉 特征提取
作者
Weihang Chen,Xuebai Zhang,Sigan Chen
标识
DOI:10.1109/icaace61206.2024.10548811
摘要

Traffic safety remains one of the most concerning issues for humans, with people dying in traffic accidents every moment, and nearly half of them being related to fatigue driving. When drivers feel fatigued, the eyes undergo significant changes. In this study, eye movement characteristics were utilized to detect the fatigue state of drivers, and a fatigue detection system was developed, combining the PERCLOS algorithm and the EAR algorithm, which were validated through experiments to assess system usability. The system was developed and designed based on traditional image processing algorithms in OpenCV and the facial feature recognition capabilities of the Dlib library. By using the 68-dimensional facial landmark detection model in the Dlib library, facial feature points were extracted, and eye tracking functionality was achieved through the feature points of the eyes. Subsequently, the PERCLOS algorithm, EAR algorithm, and a combination of the PERCLOS and EAR algorithms were employed. In this experiment, thresholds were set separately for the EAR and PERCLOS algorithms to compare the accuracy of eye movements. The system sets a threshold of 0.4 for PERCLOS, classifying it as fatigue when the proportion of closed eye time exceeds 0.4, and collects 20 sets of EAR data from the subject using an average value threshold of 0.2 to determine eye closure actions. Finally, through experiments monitoring the driver's eyes, the presence of fatigue state was determined, and the advantages and disadvantages of the three algorithms were summarized based on the experimental results. The experiment demonstrated that the Combined method algorithm has a more comprehensive detection capability compared to the PERCLOS and EAR algorithms, improving the fatigue detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
2秒前
12秒前
科研完成签到 ,获得积分10
14秒前
14秒前
senpl发布了新的文献求助10
17秒前
随心所欲完成签到 ,获得积分10
29秒前
43秒前
Jim发布了新的文献求助10
56秒前
1分钟前
S1mple发布了新的文献求助10
1分钟前
1分钟前
田様应助S1mple采纳,获得10
1分钟前
S1mple完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
汪鸡毛完成签到 ,获得积分10
2分钟前
2分钟前
guoze完成签到,获得积分10
2分钟前
2分钟前
guo发布了新的文献求助10
3分钟前
酷波er应助guo采纳,获得10
3分钟前
充电宝应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
秦明完成签到 ,获得积分10
4分钟前
juan完成签到 ,获得积分0
4分钟前
5分钟前
orixero应助科研通管家采纳,获得10
6分钟前
6分钟前
两个榴莲完成签到,获得积分0
6分钟前
zxcvvbb1001完成签到 ,获得积分10
6分钟前
7分钟前
susu_发布了新的文献求助30
7分钟前
7分钟前
susu_完成签到,获得积分10
7分钟前
senpl发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
FashionBoy应助科研通管家采纳,获得10
8分钟前
菜鸟学习完成签到 ,获得积分10
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538873
求助须知:如何正确求助?哪些是违规求助? 4625865
关于积分的说明 14596976
捐赠科研通 4566588
什么是DOI,文献DOI怎么找? 2503389
邀请新用户注册赠送积分活动 1481445
关于科研通互助平台的介绍 1452902