Fatigue Detection System for Extracting Driver's Eye Features

计算机科学 人工智能 计算机视觉 特征提取
作者
Weihang Chen,Xuebai Zhang,Sigan Chen
标识
DOI:10.1109/icaace61206.2024.10548811
摘要

Traffic safety remains one of the most concerning issues for humans, with people dying in traffic accidents every moment, and nearly half of them being related to fatigue driving. When drivers feel fatigued, the eyes undergo significant changes. In this study, eye movement characteristics were utilized to detect the fatigue state of drivers, and a fatigue detection system was developed, combining the PERCLOS algorithm and the EAR algorithm, which were validated through experiments to assess system usability. The system was developed and designed based on traditional image processing algorithms in OpenCV and the facial feature recognition capabilities of the Dlib library. By using the 68-dimensional facial landmark detection model in the Dlib library, facial feature points were extracted, and eye tracking functionality was achieved through the feature points of the eyes. Subsequently, the PERCLOS algorithm, EAR algorithm, and a combination of the PERCLOS and EAR algorithms were employed. In this experiment, thresholds were set separately for the EAR and PERCLOS algorithms to compare the accuracy of eye movements. The system sets a threshold of 0.4 for PERCLOS, classifying it as fatigue when the proportion of closed eye time exceeds 0.4, and collects 20 sets of EAR data from the subject using an average value threshold of 0.2 to determine eye closure actions. Finally, through experiments monitoring the driver's eyes, the presence of fatigue state was determined, and the advantages and disadvantages of the three algorithms were summarized based on the experimental results. The experiment demonstrated that the Combined method algorithm has a more comprehensive detection capability compared to the PERCLOS and EAR algorithms, improving the fatigue detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
manstar完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
DrZOU完成签到,获得积分10
6秒前
wing完成签到,获得积分10
6秒前
7秒前
byron完成签到,获得积分10
7秒前
DrZOU发布了新的文献求助10
8秒前
Kottl发布了新的文献求助10
9秒前
我爱蓝胖子完成签到,获得积分10
10秒前
科研通AI2S应助鲤鱼香烟采纳,获得10
10秒前
小李在哪儿完成签到 ,获得积分10
11秒前
byron发布了新的文献求助10
11秒前
斯文败类应助专注灵凡采纳,获得10
11秒前
12秒前
13秒前
13秒前
Michael完成签到,获得积分10
13秒前
myself完成签到,获得积分10
13秒前
13秒前
hsy309完成签到,获得积分10
14秒前
15秒前
sci完成签到,获得积分10
15秒前
16秒前
20秒前
monster0101发布了新的文献求助10
21秒前
科研挂完成签到,获得积分20
22秒前
factor完成签到,获得积分20
22秒前
lemono_o完成签到,获得积分10
23秒前
23秒前
JamesPei应助伊伊采纳,获得10
25秒前
小蘑菇应助ohhhh采纳,获得10
26秒前
烟花应助wddfz采纳,获得10
26秒前
26秒前
jumppll完成签到,获得积分10
26秒前
汉堡包应助打败拖延症采纳,获得10
26秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157189
求助须知:如何正确求助?哪些是违规求助? 2808483
关于积分的说明 7877835
捐赠科研通 2467029
什么是DOI,文献DOI怎么找? 1313118
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919