亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fatigue Detection System for Extracting Driver's Eye Features

计算机科学 人工智能 计算机视觉 特征提取
作者
Weihang Chen,Xuebai Zhang,Sigan Chen
标识
DOI:10.1109/icaace61206.2024.10548811
摘要

Traffic safety remains one of the most concerning issues for humans, with people dying in traffic accidents every moment, and nearly half of them being related to fatigue driving. When drivers feel fatigued, the eyes undergo significant changes. In this study, eye movement characteristics were utilized to detect the fatigue state of drivers, and a fatigue detection system was developed, combining the PERCLOS algorithm and the EAR algorithm, which were validated through experiments to assess system usability. The system was developed and designed based on traditional image processing algorithms in OpenCV and the facial feature recognition capabilities of the Dlib library. By using the 68-dimensional facial landmark detection model in the Dlib library, facial feature points were extracted, and eye tracking functionality was achieved through the feature points of the eyes. Subsequently, the PERCLOS algorithm, EAR algorithm, and a combination of the PERCLOS and EAR algorithms were employed. In this experiment, thresholds were set separately for the EAR and PERCLOS algorithms to compare the accuracy of eye movements. The system sets a threshold of 0.4 for PERCLOS, classifying it as fatigue when the proportion of closed eye time exceeds 0.4, and collects 20 sets of EAR data from the subject using an average value threshold of 0.2 to determine eye closure actions. Finally, through experiments monitoring the driver's eyes, the presence of fatigue state was determined, and the advantages and disadvantages of the three algorithms were summarized based on the experimental results. The experiment demonstrated that the Combined method algorithm has a more comprehensive detection capability compared to the PERCLOS and EAR algorithms, improving the fatigue detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左传琦完成签到 ,获得积分10
刚刚
NOTHING完成签到 ,获得积分10
6秒前
7秒前
吞吞完成签到 ,获得积分10
8秒前
慧灰huihui发布了新的文献求助10
12秒前
12秒前
ceeray23发布了新的文献求助20
17秒前
英俊的铭应助慧灰huihui采纳,获得10
18秒前
Jy完成签到 ,获得积分10
48秒前
curtain完成签到,获得积分10
50秒前
清飏应助karstbing采纳,获得220
56秒前
田様应助Y123采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Y123发布了新的文献求助10
1分钟前
1分钟前
领导范儿应助Y123采纳,获得10
1分钟前
平淡如天完成签到,获得积分10
1分钟前
caca完成签到,获得积分0
1分钟前
1分钟前
yishujia完成签到,获得积分20
1分钟前
April发布了新的文献求助10
1分钟前
脱锦涛完成签到 ,获得积分10
1分钟前
汉堡包应助勤劳影子采纳,获得10
1分钟前
April完成签到,获得积分10
1分钟前
2分钟前
2分钟前
越听初发布了新的文献求助10
2分钟前
JamesPei应助阔达的凝丝采纳,获得10
2分钟前
研友_LX62KZ发布了新的文献求助10
2分钟前
Tumumu完成签到,获得积分0
2分钟前
2分钟前
阔达的凝丝给阔达的凝丝的求助进行了留言
2分钟前
犬来八荒发布了新的文献求助10
2分钟前
温暖大米完成签到 ,获得积分0
2分钟前
越听初完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634800
求助须知:如何正确求助?哪些是违规求助? 4733832
关于积分的说明 14989260
捐赠科研通 4792487
什么是DOI,文献DOI怎么找? 2559621
邀请新用户注册赠送积分活动 1519959
关于科研通互助平台的介绍 1480023