亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fatigue Detection System for Extracting Driver's Eye Features

计算机科学 人工智能 计算机视觉 特征提取
作者
Weihang Chen,Xuebai Zhang,Sigan Chen
标识
DOI:10.1109/icaace61206.2024.10548811
摘要

Traffic safety remains one of the most concerning issues for humans, with people dying in traffic accidents every moment, and nearly half of them being related to fatigue driving. When drivers feel fatigued, the eyes undergo significant changes. In this study, eye movement characteristics were utilized to detect the fatigue state of drivers, and a fatigue detection system was developed, combining the PERCLOS algorithm and the EAR algorithm, which were validated through experiments to assess system usability. The system was developed and designed based on traditional image processing algorithms in OpenCV and the facial feature recognition capabilities of the Dlib library. By using the 68-dimensional facial landmark detection model in the Dlib library, facial feature points were extracted, and eye tracking functionality was achieved through the feature points of the eyes. Subsequently, the PERCLOS algorithm, EAR algorithm, and a combination of the PERCLOS and EAR algorithms were employed. In this experiment, thresholds were set separately for the EAR and PERCLOS algorithms to compare the accuracy of eye movements. The system sets a threshold of 0.4 for PERCLOS, classifying it as fatigue when the proportion of closed eye time exceeds 0.4, and collects 20 sets of EAR data from the subject using an average value threshold of 0.2 to determine eye closure actions. Finally, through experiments monitoring the driver's eyes, the presence of fatigue state was determined, and the advantages and disadvantages of the three algorithms were summarized based on the experimental results. The experiment demonstrated that the Combined method algorithm has a more comprehensive detection capability compared to the PERCLOS and EAR algorithms, improving the fatigue detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Baboon发布了新的文献求助10
5秒前
6秒前
超帅建完成签到,获得积分10
30秒前
39秒前
45秒前
47秒前
肉丸完成签到 ,获得积分10
1分钟前
李爱国应助putao采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
putao发布了新的文献求助10
2分钟前
2分钟前
小白菜完成签到,获得积分10
3分钟前
lanxinge完成签到 ,获得积分10
3分钟前
上官枫完成签到 ,获得积分10
3分钟前
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
信陵君无忌完成签到,获得积分10
3分钟前
支雨泽完成签到,获得积分10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Jasper应助科研通管家采纳,获得50
4分钟前
putao完成签到,获得积分10
4分钟前
luobo123完成签到 ,获得积分10
4分钟前
4分钟前
葫芦侠完成签到,获得积分20
5分钟前
5分钟前
葫芦侠发布了新的文献求助10
5分钟前
隐形曼青应助H_W采纳,获得10
5分钟前
Derrick完成签到,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
辣酒猫发布了新的文献求助10
6分钟前
Baboon发布了新的文献求助10
6分钟前
英俊的铭应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
NexusExplorer应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658030
求助须知:如何正确求助?哪些是违规求助? 4816482
关于积分的说明 15080823
捐赠科研通 4816367
什么是DOI,文献DOI怎么找? 2577299
邀请新用户注册赠送积分活动 1532309
关于科研通互助平台的介绍 1490932