Fatigue Detection System for Extracting Driver's Eye Features

计算机科学 人工智能 计算机视觉 特征提取
作者
Weihang Chen,Xuebai Zhang,Sigan Chen
标识
DOI:10.1109/icaace61206.2024.10548811
摘要

Traffic safety remains one of the most concerning issues for humans, with people dying in traffic accidents every moment, and nearly half of them being related to fatigue driving. When drivers feel fatigued, the eyes undergo significant changes. In this study, eye movement characteristics were utilized to detect the fatigue state of drivers, and a fatigue detection system was developed, combining the PERCLOS algorithm and the EAR algorithm, which were validated through experiments to assess system usability. The system was developed and designed based on traditional image processing algorithms in OpenCV and the facial feature recognition capabilities of the Dlib library. By using the 68-dimensional facial landmark detection model in the Dlib library, facial feature points were extracted, and eye tracking functionality was achieved through the feature points of the eyes. Subsequently, the PERCLOS algorithm, EAR algorithm, and a combination of the PERCLOS and EAR algorithms were employed. In this experiment, thresholds were set separately for the EAR and PERCLOS algorithms to compare the accuracy of eye movements. The system sets a threshold of 0.4 for PERCLOS, classifying it as fatigue when the proportion of closed eye time exceeds 0.4, and collects 20 sets of EAR data from the subject using an average value threshold of 0.2 to determine eye closure actions. Finally, through experiments monitoring the driver's eyes, the presence of fatigue state was determined, and the advantages and disadvantages of the three algorithms were summarized based on the experimental results. The experiment demonstrated that the Combined method algorithm has a more comprehensive detection capability compared to the PERCLOS and EAR algorithms, improving the fatigue detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sos完成签到,获得积分10
1秒前
布布完成签到,获得积分10
1秒前
3秒前
hq完成签到,获得积分10
3秒前
澈千子完成签到,获得积分10
4秒前
xiaowanzi完成签到 ,获得积分10
4秒前
futianyu完成签到 ,获得积分0
5秒前
yang完成签到,获得积分10
5秒前
丫丫完成签到,获得积分10
6秒前
DijiaXu应助烂漫人达采纳,获得10
7秒前
7秒前
自行设置完成签到,获得积分10
7秒前
美丽凡阳完成签到,获得积分10
8秒前
铃旅完成签到,获得积分10
9秒前
zulpikar完成签到 ,获得积分10
10秒前
wsg完成签到,获得积分10
10秒前
WNL完成签到,获得积分10
10秒前
11秒前
蓝豆子完成签到 ,获得积分10
11秒前
文艺代灵完成签到,获得积分10
11秒前
大个应助humaning采纳,获得10
13秒前
欣喜的薯片完成签到 ,获得积分10
13秒前
007完成签到,获得积分10
13秒前
liguanyu1078完成签到,获得积分10
14秒前
weiyongswust发布了新的文献求助10
14秒前
海东来应助seattle采纳,获得50
14秒前
早起完成签到,获得积分10
15秒前
陈陈完成签到,获得积分10
15秒前
中岛悠斗完成签到,获得积分10
16秒前
淘宝叮咚发布了新的文献求助10
17秒前
要减肥灭绝完成签到,获得积分10
17秒前
007完成签到,获得积分10
17秒前
优雅友蕊完成签到,获得积分10
18秒前
端庄的蜡烛完成签到,获得积分10
18秒前
恐龙完成签到 ,获得积分10
18秒前
junzilan完成签到,获得积分10
19秒前
AN完成签到,获得积分10
19秒前
感性的安露完成签到,获得积分0
19秒前
20秒前
任风完成签到,获得积分10
20秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027