Fatigue Detection System for Extracting Driver's Eye Features

计算机科学 人工智能 计算机视觉 特征提取
作者
Weihang Chen,Xuebai Zhang,Sigan Chen
标识
DOI:10.1109/icaace61206.2024.10548811
摘要

Traffic safety remains one of the most concerning issues for humans, with people dying in traffic accidents every moment, and nearly half of them being related to fatigue driving. When drivers feel fatigued, the eyes undergo significant changes. In this study, eye movement characteristics were utilized to detect the fatigue state of drivers, and a fatigue detection system was developed, combining the PERCLOS algorithm and the EAR algorithm, which were validated through experiments to assess system usability. The system was developed and designed based on traditional image processing algorithms in OpenCV and the facial feature recognition capabilities of the Dlib library. By using the 68-dimensional facial landmark detection model in the Dlib library, facial feature points were extracted, and eye tracking functionality was achieved through the feature points of the eyes. Subsequently, the PERCLOS algorithm, EAR algorithm, and a combination of the PERCLOS and EAR algorithms were employed. In this experiment, thresholds were set separately for the EAR and PERCLOS algorithms to compare the accuracy of eye movements. The system sets a threshold of 0.4 for PERCLOS, classifying it as fatigue when the proportion of closed eye time exceeds 0.4, and collects 20 sets of EAR data from the subject using an average value threshold of 0.2 to determine eye closure actions. Finally, through experiments monitoring the driver's eyes, the presence of fatigue state was determined, and the advantages and disadvantages of the three algorithms were summarized based on the experimental results. The experiment demonstrated that the Combined method algorithm has a more comprehensive detection capability compared to the PERCLOS and EAR algorithms, improving the fatigue detection performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jorgan完成签到,获得积分10
刚刚
英姑应助解语花采纳,获得10
刚刚
1秒前
夕荀发布了新的文献求助10
1秒前
埃尔拉发布了新的文献求助10
1秒前
乐安完成签到,获得积分10
1秒前
2秒前
Chichi发布了新的文献求助10
2秒前
HowesFeng发布了新的文献求助10
2秒前
3秒前
苏silence发布了新的文献求助10
3秒前
易楠发布了新的文献求助10
3秒前
ning完成签到,获得积分10
3秒前
六百六十六完成签到,获得积分10
3秒前
发发发发布了新的文献求助30
3秒前
852应助crytek采纳,获得50
3秒前
长颈鹿发布了新的文献求助10
3秒前
4秒前
guozizi发布了新的文献求助10
4秒前
zhong完成签到,获得积分10
4秒前
yulong完成签到,获得积分10
4秒前
高登登发布了新的文献求助10
5秒前
Criminology34应助DueDue0327采纳,获得10
5秒前
漂亮的秋天完成签到 ,获得积分10
5秒前
anny2022完成签到,获得积分10
5秒前
Patty发布了新的文献求助10
5秒前
吕培森发布了新的文献求助10
5秒前
5秒前
称心寒松完成签到,获得积分10
5秒前
jay2000完成签到,获得积分10
6秒前
虹虹完成签到 ,获得积分10
6秒前
Frank应助美满的太英采纳,获得10
7秒前
redflower发布了新的文献求助10
7秒前
小笼包发布了新的文献求助10
7秒前
CipherSage应助tinatian270采纳,获得10
7秒前
李归来完成签到 ,获得积分10
7秒前
阳佟天川完成签到,获得积分10
7秒前
Owen应助melody采纳,获得30
8秒前
精明柜子应助重楼远志采纳,获得100
8秒前
解语花完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006