Fatigue Detection System for Extracting Driver's Eye Features

计算机科学 人工智能 计算机视觉 特征提取
作者
Weihang Chen,Xuebai Zhang,Sigan Chen
标识
DOI:10.1109/icaace61206.2024.10548811
摘要

Traffic safety remains one of the most concerning issues for humans, with people dying in traffic accidents every moment, and nearly half of them being related to fatigue driving. When drivers feel fatigued, the eyes undergo significant changes. In this study, eye movement characteristics were utilized to detect the fatigue state of drivers, and a fatigue detection system was developed, combining the PERCLOS algorithm and the EAR algorithm, which were validated through experiments to assess system usability. The system was developed and designed based on traditional image processing algorithms in OpenCV and the facial feature recognition capabilities of the Dlib library. By using the 68-dimensional facial landmark detection model in the Dlib library, facial feature points were extracted, and eye tracking functionality was achieved through the feature points of the eyes. Subsequently, the PERCLOS algorithm, EAR algorithm, and a combination of the PERCLOS and EAR algorithms were employed. In this experiment, thresholds were set separately for the EAR and PERCLOS algorithms to compare the accuracy of eye movements. The system sets a threshold of 0.4 for PERCLOS, classifying it as fatigue when the proportion of closed eye time exceeds 0.4, and collects 20 sets of EAR data from the subject using an average value threshold of 0.2 to determine eye closure actions. Finally, through experiments monitoring the driver's eyes, the presence of fatigue state was determined, and the advantages and disadvantages of the three algorithms were summarized based on the experimental results. The experiment demonstrated that the Combined method algorithm has a more comprehensive detection capability compared to the PERCLOS and EAR algorithms, improving the fatigue detection performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助动听导师采纳,获得10
刚刚
MADKAI发布了新的文献求助10
刚刚
科研通AI5应助蒋念寒采纳,获得10
1秒前
ric发布了新的文献求助200
1秒前
Li完成签到,获得积分10
1秒前
1秒前
min17完成签到,获得积分10
2秒前
2秒前
小黄发布了新的文献求助10
2秒前
Lucas应助dldddz采纳,获得10
3秒前
3秒前
柠木发布了新的文献求助10
3秒前
郭泓嵩完成签到,获得积分10
4秒前
自由刺猬发布了新的文献求助20
4秒前
weddcf发布了新的文献求助10
4秒前
江月年完成签到 ,获得积分10
4秒前
ZHANG_Kun完成签到 ,获得积分10
4秒前
bin0920完成签到,获得积分10
5秒前
6秒前
6秒前
cruise发布了新的文献求助10
6秒前
向日葵的Rui完成签到,获得积分10
6秒前
小xy发布了新的文献求助10
6秒前
7秒前
香蕉觅云应助青石采纳,获得10
7秒前
科目三应助yangyang采纳,获得10
7秒前
仄兀发布了新的文献求助10
7秒前
小小鱼发布了新的文献求助10
7秒前
孙成成完成签到 ,获得积分10
8秒前
ee完成签到,获得积分10
8秒前
刘德华完成签到,获得积分10
8秒前
Disci完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
帅气鹭洋发布了新的文献求助10
10秒前
夏昼发布了新的文献求助10
10秒前
cometx完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678