Multimodal Radiomics Model for Predicting Gold Nanoparticles Accumulation in Mouse Tumors

无线电技术 胶体金 纳米颗粒 金标准(测试) 计算机科学 纳米技术 人工智能 材料科学 医学 内科学
作者
Jiajia Tang,Jie Zhang,Jiulou Zhang,Yuxia Tang,Hao Ni,Shouju Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.10146
摘要

Background: Nanoparticles can accumulate in solid tumors, serving as diagnostic or therapeutic agents for cancer. Clinical translation is challenging due to low accumulation in tumors and heterogeneity between tumor types and individuals. Tools to identify this heterogeneity and predict nanoparticle accumulation are needed. Advanced imaging techniques combined with radiomics and AI may offer a solution. Methods: 183 mice were used to create seven subcutaneous tumor models, with three sizes (15nm, 40nm, 70nm) of gold nanoparticles injected via the tail vein. Accumulation was measured using ICP-OES. Data were divided into training and test sets (7:3). Tumors were categorized into high and low uptake groups based on the median value of the training set. Before injection, multimodal imaging data (CT, B-mode ultrasound, SWE, CEUS) were acquired, and radiomics features extracted. LASSO and RFE algorithms built a radiomics signature. This, along with tumor type and mean values from CT and SWE, constructed the best model using SVM. For each tumor in the test set, the radiomics signature predicted gold nanoparticle uptake. Model performance was evaluated by AUC. Results: Significant variability in gold nanoparticle accumulation was observed among tumors (P < 0.001). The median accumulation in the training set was 3.37% ID/g. Nanoparticle size was not a main determinant of uptake (P > 0.05). The composite model based on radiomics signature outperformed the basic model in both training (AUC 0.93 vs. 0.68) and testing (0.78 vs. 0.61) datasets. Conclusion: The composite model identifies tumor heterogeneity and predicts high uptake of gold nanoparticles, improving patient stratification and supporting nanomedicine's clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
王通发布了新的文献求助10
1秒前
1秒前
zhy发布了新的文献求助10
2秒前
橘子海完成签到 ,获得积分10
2秒前
谦让问兰完成签到 ,获得积分20
2秒前
2秒前
2秒前
自由的飞烟完成签到,获得积分20
3秒前
4秒前
4秒前
木棉发布了新的文献求助10
4秒前
我要发nature完成签到,获得积分10
4秒前
Twonej应助吴兰田采纳,获得30
4秒前
汉堡包应助踏实乌冬面采纳,获得10
4秒前
5秒前
脑洞疼应助傲娇的秋柳采纳,获得10
5秒前
领导范儿应助ATM采纳,获得10
5秒前
DRDOC发布了新的文献求助10
5秒前
5秒前
小二郎应助小松徐采纳,获得10
6秒前
寒冷向真完成签到,获得积分10
6秒前
CipherSage应助月亮采纳,获得10
6秒前
高山我梦发布了新的文献求助20
6秒前
健忘飞风发布了新的文献求助10
7秒前
Orange应助怕黑诗桃采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
9秒前
9秒前
Zosty发布了新的文献求助10
9秒前
领导范儿应助成就的乐双采纳,获得10
9秒前
寒冷向真发布了新的文献求助30
10秒前
田様应助煎饼大小姐采纳,获得10
10秒前
zhy关闭了zhy文献求助
10秒前
庞威完成签到 ,获得积分10
10秒前
乘风文月完成签到,获得积分10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699639
求助须知:如何正确求助?哪些是违规求助? 5132174
关于积分的说明 15227194
捐赠科研通 4854644
什么是DOI,文献DOI怎么找? 2604831
邀请新用户注册赠送积分活动 1556206
关于科研通互助平台的介绍 1514427