无线电技术
胶体金
纳米颗粒
金标准(测试)
计算机科学
纳米技术
人工智能
材料科学
医学
内科学
作者
Jiajia Tang,Jie Zhang,Jiulou Zhang,Yuxia Tang,Hao Ni,Shouju Wang
出处
期刊:Cornell University - arXiv
日期:2024-06-14
标识
DOI:10.48550/arxiv.2406.10146
摘要
Background: Nanoparticles can accumulate in solid tumors, serving as diagnostic or therapeutic agents for cancer. Clinical translation is challenging due to low accumulation in tumors and heterogeneity between tumor types and individuals. Tools to identify this heterogeneity and predict nanoparticle accumulation are needed. Advanced imaging techniques combined with radiomics and AI may offer a solution. Methods: 183 mice were used to create seven subcutaneous tumor models, with three sizes (15nm, 40nm, 70nm) of gold nanoparticles injected via the tail vein. Accumulation was measured using ICP-OES. Data were divided into training and test sets (7:3). Tumors were categorized into high and low uptake groups based on the median value of the training set. Before injection, multimodal imaging data (CT, B-mode ultrasound, SWE, CEUS) were acquired, and radiomics features extracted. LASSO and RFE algorithms built a radiomics signature. This, along with tumor type and mean values from CT and SWE, constructed the best model using SVM. For each tumor in the test set, the radiomics signature predicted gold nanoparticle uptake. Model performance was evaluated by AUC. Results: Significant variability in gold nanoparticle accumulation was observed among tumors (P < 0.001). The median accumulation in the training set was 3.37% ID/g. Nanoparticle size was not a main determinant of uptake (P > 0.05). The composite model based on radiomics signature outperformed the basic model in both training (AUC 0.93 vs. 0.68) and testing (0.78 vs. 0.61) datasets. Conclusion: The composite model identifies tumor heterogeneity and predicts high uptake of gold nanoparticles, improving patient stratification and supporting nanomedicine's clinical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI