Multimodal Radiomics Model for Predicting Gold Nanoparticles Accumulation in Mouse Tumors

无线电技术 胶体金 纳米颗粒 金标准(测试) 计算机科学 纳米技术 人工智能 材料科学 医学 内科学
作者
Jiajia Tang,Jie Zhang,Jiulou Zhang,Yuxia Tang,Hao Ni,Shouju Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.10146
摘要

Background: Nanoparticles can accumulate in solid tumors, serving as diagnostic or therapeutic agents for cancer. Clinical translation is challenging due to low accumulation in tumors and heterogeneity between tumor types and individuals. Tools to identify this heterogeneity and predict nanoparticle accumulation are needed. Advanced imaging techniques combined with radiomics and AI may offer a solution. Methods: 183 mice were used to create seven subcutaneous tumor models, with three sizes (15nm, 40nm, 70nm) of gold nanoparticles injected via the tail vein. Accumulation was measured using ICP-OES. Data were divided into training and test sets (7:3). Tumors were categorized into high and low uptake groups based on the median value of the training set. Before injection, multimodal imaging data (CT, B-mode ultrasound, SWE, CEUS) were acquired, and radiomics features extracted. LASSO and RFE algorithms built a radiomics signature. This, along with tumor type and mean values from CT and SWE, constructed the best model using SVM. For each tumor in the test set, the radiomics signature predicted gold nanoparticle uptake. Model performance was evaluated by AUC. Results: Significant variability in gold nanoparticle accumulation was observed among tumors (P < 0.001). The median accumulation in the training set was 3.37% ID/g. Nanoparticle size was not a main determinant of uptake (P > 0.05). The composite model based on radiomics signature outperformed the basic model in both training (AUC 0.93 vs. 0.68) and testing (0.78 vs. 0.61) datasets. Conclusion: The composite model identifies tumor heterogeneity and predicts high uptake of gold nanoparticles, improving patient stratification and supporting nanomedicine's clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qq完成签到 ,获得积分10
1秒前
Nacy发布了新的文献求助10
1秒前
微笑正豪完成签到,获得积分10
2秒前
lululala发布了新的文献求助10
2秒前
Hello应助笨笨凡松采纳,获得10
4秒前
5秒前
5秒前
6秒前
cocolu应助__采纳,获得10
8秒前
8秒前
LIJINGGE发布了新的文献求助10
9秒前
10秒前
lululala完成签到,获得积分10
10秒前
简单以宁2完成签到,获得积分10
12秒前
12秒前
Zac完成签到,获得积分10
12秒前
超级的路人完成签到,获得积分10
13秒前
14秒前
华毒娘发布了新的文献求助10
14秒前
lilivite应助conny采纳,获得50
16秒前
zsl0207关注了科研通微信公众号
16秒前
124332发布了新的文献求助10
16秒前
zifeiyu1221发布了新的文献求助10
17秒前
17秒前
呓语发布了新的文献求助10
19秒前
20秒前
LIJINGGE完成签到,获得积分10
22秒前
eo发布了新的文献求助10
23秒前
啊啦啦应助SHENJINBING采纳,获得20
23秒前
23秒前
25秒前
博修发布了新的文献求助10
25秒前
27秒前
清爽的真发布了新的文献求助10
27秒前
28秒前
林风发布了新的文献求助10
31秒前
orixero应助科研小白采纳,获得10
31秒前
zsl0207发布了新的文献求助10
31秒前
媛桃子完成签到 ,获得积分10
32秒前
小白完成签到,获得积分10
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265201
求助须知:如何正确求助?哪些是违规求助? 2905139
关于积分的说明 8332832
捐赠科研通 2575560
什么是DOI,文献DOI怎么找? 1399908
科研通“疑难数据库(出版商)”最低求助积分说明 654613
邀请新用户注册赠送积分活动 633468