Multimodal Radiomics Model for Predicting Gold Nanoparticles Accumulation in Mouse Tumors

无线电技术 胶体金 纳米颗粒 金标准(测试) 计算机科学 纳米技术 人工智能 材料科学 医学 内科学
作者
Jiajia Tang,Jie Zhang,Jiulou Zhang,Yuxia Tang,Hao Ni,Shouju Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.10146
摘要

Background: Nanoparticles can accumulate in solid tumors, serving as diagnostic or therapeutic agents for cancer. Clinical translation is challenging due to low accumulation in tumors and heterogeneity between tumor types and individuals. Tools to identify this heterogeneity and predict nanoparticle accumulation are needed. Advanced imaging techniques combined with radiomics and AI may offer a solution. Methods: 183 mice were used to create seven subcutaneous tumor models, with three sizes (15nm, 40nm, 70nm) of gold nanoparticles injected via the tail vein. Accumulation was measured using ICP-OES. Data were divided into training and test sets (7:3). Tumors were categorized into high and low uptake groups based on the median value of the training set. Before injection, multimodal imaging data (CT, B-mode ultrasound, SWE, CEUS) were acquired, and radiomics features extracted. LASSO and RFE algorithms built a radiomics signature. This, along with tumor type and mean values from CT and SWE, constructed the best model using SVM. For each tumor in the test set, the radiomics signature predicted gold nanoparticle uptake. Model performance was evaluated by AUC. Results: Significant variability in gold nanoparticle accumulation was observed among tumors (P < 0.001). The median accumulation in the training set was 3.37% ID/g. Nanoparticle size was not a main determinant of uptake (P > 0.05). The composite model based on radiomics signature outperformed the basic model in both training (AUC 0.93 vs. 0.68) and testing (0.78 vs. 0.61) datasets. Conclusion: The composite model identifies tumor heterogeneity and predicts high uptake of gold nanoparticles, improving patient stratification and supporting nanomedicine's clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hh完成签到 ,获得积分10
2秒前
2秒前
2秒前
隐形曼青应助什么都不想采纳,获得10
3秒前
刘纾菡完成签到,获得积分10
3秒前
sunny发布了新的文献求助10
3秒前
3秒前
酷波er应助收手吧大哥采纳,获得10
4秒前
尽舜尧发布了新的文献求助10
4秒前
min关注了科研通微信公众号
4秒前
共享精神应助xu采纳,获得10
4秒前
faye发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
呆萌惜梦完成签到 ,获得积分10
5秒前
聪慧的冥完成签到,获得积分10
5秒前
6秒前
6秒前
星辰大海应助son采纳,获得10
6秒前
6秒前
Xdhcg发布了新的文献求助10
7秒前
切尔顿发布了新的文献求助50
8秒前
8秒前
在水一方应助罗大壮采纳,获得10
8秒前
8秒前
星辰大海应助lllllllxy采纳,获得10
9秒前
cslghe发布了新的文献求助10
9秒前
萧晓发布了新的文献求助10
9秒前
9秒前
10秒前
婷婷发布了新的文献求助10
10秒前
1911988020完成签到,获得积分10
10秒前
南北完成签到,获得积分10
10秒前
11秒前
兜兜发布了新的文献求助10
12秒前
侧耳倾听发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
进步面包笑哈哈完成签到,获得积分10
14秒前
youjiwuji发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165