Multimodal Radiomics Model for Predicting Gold Nanoparticles Accumulation in Mouse Tumors

无线电技术 胶体金 纳米颗粒 金标准(测试) 计算机科学 纳米技术 人工智能 材料科学 医学 内科学
作者
Jiajia Tang,Jie Zhang,Jiulou Zhang,Yuxia Tang,Hao Ni,Shouju Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2406.10146
摘要

Background: Nanoparticles can accumulate in solid tumors, serving as diagnostic or therapeutic agents for cancer. Clinical translation is challenging due to low accumulation in tumors and heterogeneity between tumor types and individuals. Tools to identify this heterogeneity and predict nanoparticle accumulation are needed. Advanced imaging techniques combined with radiomics and AI may offer a solution. Methods: 183 mice were used to create seven subcutaneous tumor models, with three sizes (15nm, 40nm, 70nm) of gold nanoparticles injected via the tail vein. Accumulation was measured using ICP-OES. Data were divided into training and test sets (7:3). Tumors were categorized into high and low uptake groups based on the median value of the training set. Before injection, multimodal imaging data (CT, B-mode ultrasound, SWE, CEUS) were acquired, and radiomics features extracted. LASSO and RFE algorithms built a radiomics signature. This, along with tumor type and mean values from CT and SWE, constructed the best model using SVM. For each tumor in the test set, the radiomics signature predicted gold nanoparticle uptake. Model performance was evaluated by AUC. Results: Significant variability in gold nanoparticle accumulation was observed among tumors (P < 0.001). The median accumulation in the training set was 3.37% ID/g. Nanoparticle size was not a main determinant of uptake (P > 0.05). The composite model based on radiomics signature outperformed the basic model in both training (AUC 0.93 vs. 0.68) and testing (0.78 vs. 0.61) datasets. Conclusion: The composite model identifies tumor heterogeneity and predicts high uptake of gold nanoparticles, improving patient stratification and supporting nanomedicine's clinical application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天津星发布了新的文献求助10
刚刚
刚刚
刚刚
Gorone发布了新的文献求助10
刚刚
杨文静完成签到,获得积分10
1秒前
1秒前
材料人好材料完成签到,获得积分20
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
Wan完成签到,获得积分10
3秒前
落寞明雪完成签到,获得积分10
3秒前
科研通AI6.1应助virgo采纳,获得10
3秒前
suzy-123完成签到,获得积分10
3秒前
木哥完成签到,获得积分10
3秒前
打打应助wshwx采纳,获得10
3秒前
ecrrry发布了新的文献求助10
3秒前
充电宝应助俏皮的冬云采纳,获得10
3秒前
舒心的雍发布了新的文献求助10
4秒前
1111完成签到,获得积分10
4秒前
开放依琴发布了新的文献求助10
4秒前
5秒前
结实凡雁完成签到,获得积分10
5秒前
bababoi发布了新的文献求助10
5秒前
vict发布了新的文献求助10
5秒前
YifanWang应助圆圆采纳,获得10
5秒前
5秒前
周小鱼发布了新的文献求助10
5秒前
FashionBoy应助kk采纳,获得10
6秒前
6秒前
我是老大应助季博常采纳,获得10
6秒前
6秒前
默默曼安发布了新的文献求助10
7秒前
不灭钻石完成签到,获得积分20
7秒前
凶狠的小兔子完成签到 ,获得积分10
7秒前
7秒前
彭于晏应助jiyixiao1采纳,获得10
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751492
求助须知:如何正确求助?哪些是违规求助? 5468644
关于积分的说明 15370160
捐赠科研通 4890643
什么是DOI,文献DOI怎么找? 2629816
邀请新用户注册赠送积分活动 1578002
关于科研通互助平台的介绍 1534196