Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance

压电 相界 陶瓷 居里温度 兴奋剂 铁电性 材料科学 非线性系统 相(物质) 矿物学 分析化学(期刊) 凝聚态物理 物理 复合材料 光电子学 化学 量子力学 色谱法 铁磁性 电介质
作者
Rui Xin,Yaqi Wang,Ze Fang,Fengji Zheng,Wen Gao,Dashi Fu,Guoqing Shi,Jianyi Liu,Yong-cheng Zhang
出处
期刊:Chinese Physics B [IOP Publishing]
卷期号:33 (8): 087701-087701
标识
DOI:10.1088/1674-1056/ad51f3
摘要

Abstract Pb(Mg 1/3 Nb 2/3 )O 3 –PbTiO 3 (PMN-PT) piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications. Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients. The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics, which makes it not easy to extend the sample data by additional experimental or theoretical calculations. In this paper, a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components. In contrast to all-data-driven model, physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties. Based on the model outputs, the positions of morphotropic phase boundary (MPB) with different Sm doping amounts are explored. We also find the components with the best piezoelectric property and comprehensive performance. Moreover, we set up a database according to the obtained results, through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜亦巧完成签到,获得积分10
刚刚
栗惠发布了新的文献求助20
1秒前
1秒前
2秒前
4秒前
小二郎应助高手采纳,获得10
4秒前
5秒前
民科王聪发布了新的文献求助10
5秒前
5秒前
YaoZhang完成签到 ,获得积分10
6秒前
潇湘雪月发布了新的文献求助10
7秒前
8秒前
如意枫叶发布了新的文献求助10
8秒前
Rondab应助卡卡罗特采纳,获得10
11秒前
15秒前
19秒前
20秒前
芋孟齐发布了新的文献求助10
20秒前
24秒前
24秒前
一路生花完成签到,获得积分10
24秒前
orixero应助小慧儿采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
24秒前
SYLH应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
潇湘雪月发布了新的文献求助10
25秒前
今后应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
打打应助科研通管家采纳,获得10
25秒前
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
25秒前
斯文败类应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
25秒前
爆米花应助科研通管家采纳,获得10
25秒前
SYLH应助科研通管家采纳,获得30
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136