压电
相界
陶瓷
居里温度
兴奋剂
铁电性
材料科学
非线性系统
相(物质)
矿物学
分析化学(期刊)
凝聚态物理
物理
复合材料
光电子学
化学
量子力学
色谱法
铁磁性
电介质
作者
Rui Xin,Yaqi Wang,Ze Fang,Fengji Zheng,Wen Gao,Dashi Fu,Guoqing Shi,Jianyi Liu,Yong-cheng Zhang
标识
DOI:10.1088/1674-1056/ad51f3
摘要
Abstract Pb(Mg 1/3 Nb 2/3 )O 3 –PbTiO 3 (PMN-PT) piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications. Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients. The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics, which makes it not easy to extend the sample data by additional experimental or theoretical calculations. In this paper, a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components. In contrast to all-data-driven model, physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties. Based on the model outputs, the positions of morphotropic phase boundary (MPB) with different Sm doping amounts are explored. We also find the components with the best piezoelectric property and comprehensive performance. Moreover, we set up a database according to the obtained results, through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
科研通智能强力驱动
Strongly Powered by AbleSci AI