Self-powered porous polymer sensors with high sensitivity for machine learning-assisted motion and rehabilitation monitoring

摩擦电效应 可穿戴计算机 材料科学 纳米发生器 灵敏度(控制系统) 耐久性 康复 计算机科学 可穿戴技术 人工智能 嵌入式系统 工程类 医学 复合材料 电子工程 物理疗法 压电
作者
Liqiang Liu,Jun Li,Zhiyu Tian,Xiaowei Hu,Han Wu,Xucong Chen,Le Zhang,Wei Ou‐Yang
出处
期刊:Nano Energy [Elsevier]
卷期号:128: 109817-109817 被引量:18
标识
DOI:10.1016/j.nanoen.2024.109817
摘要

Muscle contraction and relaxation inherently contains valuable information crucial for monitoring physical states, rehabilitation, and injury prevention. However, the majority of flexible wearable devices struggle to offer customizable sensors with high sensitivity, durability, and stability, resulting in suboptimal biofeedback performance. Herein, the machine learning-assisted smart motion and rehabilitation monitoring system (SMRMS) is demonstrated for full-body motion recognition and rehabilitation assessment using a designed porous triboelectric nanogenerator (TENG) array. A theoretical model of porous materials is built to demonstrate the effect mechanism of porosity on TENG output. Through pore design on the tribolayer, theoretical simulation and experimental are performed to determine the key features of porous TENG sensors with high sensitivity (1.76 kPa−1), fast response time (50 ms) and high durability (over 100,000 cycles). A ring-shaped TENG (RS-TENG) is fabricated based on the porous TENG sensor, enabling real-time recording of leg/arm force without additional attachment. By integrating the RS-TENG array with a multichannel signal acquisition system, an SMRMS is designed to capture motion information during human subjects' exercise and rehabilitation training. These data are then fused for machine learning analytics, resulting in significantly improved accuracy in motion pattern recognition (98.75 %) and rehabilitation monitoring (100 %). The simple, precise and durable porous sensors could help mitigate the risk of excessive exercise-induced muscle injuries, expanding self-powered wearable functionalities and adaptabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彭尧完成签到,获得积分10
3秒前
3秒前
guoxihan发布了新的文献求助10
3秒前
bkagyin应助Wmhuahuaood采纳,获得10
4秒前
大海风完成签到,获得积分10
4秒前
zho发布了新的文献求助10
5秒前
onionoo发布了新的文献求助10
5秒前
研友_VZG7GZ应助Yyyyyy11采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
脑洞疼应助幸运小怪兽采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得30
8秒前
Elonsr应助科研通管家采纳,获得50
8秒前
eason应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
8秒前
ttxxcdx发布了新的文献求助10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得50
9秒前
9秒前
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
9秒前
dd完成签到,获得积分10
10秒前
panlee应助ff采纳,获得10
12秒前
wyt完成签到,获得积分10
12秒前
ding应助9℃采纳,获得10
12秒前
Owen应助onionoo采纳,获得10
12秒前
13秒前
背后的海蓝完成签到,获得积分10
14秒前
科研通AI5应助Candice采纳,获得10
14秒前
正直的文涛完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3574197
求助须知:如何正确求助?哪些是违规求助? 3143946
关于积分的说明 9454405
捐赠科研通 2845507
什么是DOI,文献DOI怎么找? 1564360
邀请新用户注册赠送积分活动 732221
科研通“疑难数据库(出版商)”最低求助积分说明 718955