Rapid discrimination of Alismatis Rhizoma and quantitative analysis of triterpenoids based on near-infrared spectroscopy

三萜类 化学 红外光谱学 传统医学 红外线的 光谱学 医学 立体化学 物理 有机化学 光学 量子力学
作者
Lulu Zhao,Weigang Zhao,Zhong-zhen Zhao,R. Patrick Xian,Muyun Jia,Yuying Jiang,Ling Zheng,Xiaoli Pan,Lan Zhou,Min Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:321: 124618-124618
标识
DOI:10.1016/j.saa.2024.124618
摘要

This study developed a rapid, accurate, objective and economic method to identify and evaluate the quality of Alismatis Rhizoma (AR) commodities. Traditionally, the identification of plant species and geographical origins of AR commodities mainly relied on experienced staff. However, the subjectivity and inaccuracy of human identification negatively impacted the trade of AR. Besides, liquid chromatographic methods such as ultra-high-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC), the major approach for the determination of triterpenoid contents in AR was time-consuming, expensive, and highly demanded in manoeuvre specialists. In this study, the combination of near-infrared (NIR) spectroscopy and chemometrics as the method was developed and utilised to address the two common issues of identifying the quality of AR commodities. Through the discriminant analysis (DA), the raw NIR spectroscopy data on 119 batches samples from two species and four origins in China were processed to the best pre-processed data. Subsequently, orthogonal partial least squares-discriminant analysis (OPLS-DA) and random forest (RF) as the major chemometrics were used to analyse the best pre-processed data. The accuracy rates by OPLS-DA and RF were respectively 100% and 97.2% for the two species of AR, and respectively100% and 94.4% for the four origins of AR. Meanwhile, a quantitative correction model was established to rapidly and economically predict the seven triterpenoid contents of AR through combining the partial least squares (PLS) method and NIR spectroscopy, and taking the triterpenoid contents measured by UPLC as the reference value, and carry out spectral pre-processing methods and band selection. The final quantitative model correlation coefficients of the seven triterpenoid contents of AR ranged from 0.9000 to 0.9999, indicating that prediction ability of this model had good stability and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助jinying采纳,获得10
刚刚
刚刚
木子发布了新的文献求助10
刚刚
nn完成签到,获得积分10
1秒前
kk完成签到,获得积分10
1秒前
急急急完成签到,获得积分10
1秒前
lsiah完成签到,获得积分10
1秒前
ciky完成签到,获得积分10
1秒前
bkagyin应助隐形人采纳,获得10
1秒前
Active完成签到,获得积分10
1秒前
搜集达人应助认真书竹采纳,获得10
4秒前
decademe完成签到,获得积分10
4秒前
骆昊焱完成签到,获得积分10
4秒前
ss发布了新的文献求助10
4秒前
开心完成签到,获得积分10
4秒前
共享精神应助qiqiya采纳,获得10
4秒前
奋斗醉冬完成签到,获得积分10
5秒前
wtt完成签到 ,获得积分10
5秒前
精明妙之完成签到,获得积分10
6秒前
赘婿应助草莓大王采纳,获得30
6秒前
星河长明完成签到,获得积分10
6秒前
张阳完成签到,获得积分10
7秒前
pyrene完成签到 ,获得积分10
7秒前
风ff发布了新的文献求助60
7秒前
Raylihuang应助往昔采纳,获得10
8秒前
幻月完成签到,获得积分10
9秒前
Ssyong完成签到 ,获得积分10
9秒前
yanxueyi完成签到 ,获得积分10
10秒前
彭于晏应助啦啦啦采纳,获得10
10秒前
芹菜煎蛋完成签到,获得积分10
10秒前
进击的咩咩完成签到 ,获得积分10
10秒前
10秒前
木木完成签到,获得积分10
11秒前
段段完成签到,获得积分10
11秒前
Lion完成签到,获得积分20
11秒前
衡阳完成签到,获得积分10
11秒前
魔幻若血完成签到,获得积分10
11秒前
iceeer完成签到,获得积分10
13秒前
kiki完成签到 ,获得积分10
13秒前
YYL完成签到 ,获得积分10
13秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099914
求助须知:如何正确求助?哪些是违规求助? 2751373
关于积分的说明 7613446
捐赠科研通 2403368
什么是DOI,文献DOI怎么找? 1275253
科研通“疑难数据库(出版商)”最低求助积分说明 616318
版权声明 599053