Rapid discrimination of Alismatis Rhizoma and quantitative analysis of triterpenoids based on near-infrared spectroscopy

三萜类 化学 红外光谱学 传统医学 红外线的 光谱学 医学 立体化学 物理 有机化学 光学 量子力学
作者
Lulu Zhao,Wenqi Zhao,Zong-yi Zhao,R. Patrick Xian,Ming-yan Jia,Yun-bin Jiang,Zheng Li,Xiaoli Pan,Zhi-qiong Lan,Min Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:321: 124618-124618 被引量:1
标识
DOI:10.1016/j.saa.2024.124618
摘要

This study developed a rapid, accurate, objective and economic method to identify and evaluate the quality of Alismatis Rhizoma (AR) commodities. Traditionally, the identification of plant species and geographical origins of AR commodities mainly relied on experienced staff. However, the subjectivity and inaccuracy of human identification negatively impacted the trade of AR. Besides, liquid chromatographic methods such as ultra-high-performance liquid chromatography (UPLC) and high-performance liquid chromatography (HPLC), the major approach for the determination of triterpenoid contents in AR was time-consuming, expensive, and highly demanded in manoeuvre specialists. In this study, the combination of near-infrared (NIR) spectroscopy and chemometrics as the method was developed and utilised to address the two common issues of identifying the quality of AR commodities. Through the discriminant analysis (DA), the raw NIR spectroscopy data on 119 batches samples from two species and four origins in China were processed to the best pre-processed data. Subsequently, orthogonal partial least squares-discriminant analysis (OPLS-DA) and random forest (RF) as the major chemometrics were used to analyse the best pre-processed data. The accuracy rates by OPLS-DA and RF were respectively 100% and 97.2% for the two species of AR, and respectively100% and 94.4% for the four origins of AR. Meanwhile, a quantitative correction model was established to rapidly and economically predict the seven triterpenoid contents of AR through combining the partial least squares (PLS) method and NIR spectroscopy, and taking the triterpenoid contents measured by UPLC as the reference value, and carry out spectral pre-processing methods and band selection. The final quantitative model correlation coefficients of the seven triterpenoid contents of AR ranged from 0.9000 to 0.9999, indicating that prediction ability of this model had good stability and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助MADKAI采纳,获得10
刚刚
李健应助MADKAI采纳,获得10
刚刚
烟花应助MADKAI采纳,获得20
刚刚
香蕉觅云应助MADKAI采纳,获得10
刚刚
科研通AI2S应助MADKAI采纳,获得10
刚刚
Singularity应助MADKAI采纳,获得10
刚刚
1秒前
1秒前
赘婿应助GGZ采纳,获得10
1秒前
阿盛完成签到,获得积分10
1秒前
1秒前
怕孤单的含羞草完成签到 ,获得积分10
2秒前
Muuu发布了新的文献求助10
2秒前
仁爱的乐枫完成签到,获得积分10
3秒前
3秒前
金润完成签到,获得积分10
4秒前
ZZ完成签到,获得积分10
4秒前
AteeqBaloch发布了新的文献求助10
5秒前
PaulLao完成签到,获得积分10
5秒前
5秒前
fleee发布了新的文献求助10
5秒前
5秒前
6秒前
Luyao发布了新的文献求助10
6秒前
海派Hi完成签到 ,获得积分10
6秒前
依依完成签到 ,获得积分10
7秒前
李健的小迷弟应助库外采纳,获得10
7秒前
yi完成签到 ,获得积分10
7秒前
kbj发布了新的文献求助10
7秒前
9秒前
佳言2009完成签到,获得积分10
10秒前
汉堡包应助漂亮的初蓝采纳,获得10
10秒前
hohokuz发布了新的文献求助10
11秒前
莫里完成签到,获得积分10
11秒前
zxz发布了新的文献求助10
11秒前
Luyao完成签到,获得积分10
12秒前
12秒前
12秒前
马甲完成签到,获得积分10
12秒前
科研通AI5应助xdf采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762