Segmenting and Predicting Musical Phrase Structure Exploits Neural Gain Modulation and Phase Precession

计算机科学 语音识别 短语 音乐形式 人工智能 分割 音乐剧 艺术 视觉艺术
作者
Xiangbin Teng,Pauline Larrouy-Maestri,David Poeppel
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e1331232024-e1331232024 被引量:2
标识
DOI:10.1523/jneurosci.1331-23.2024
摘要

Music, like spoken language, is often characterized by hierarchically organized structure. Previous experiments have shown neural tracking of notes and beats, but little work touches on the more abstract question: how does the brain establish high-level musical structures in real time? We presented Bach chorales to participants (20 females and 9 males) undergoing electroencephalogram (EEG) recording to investigate how the brain tracks musical phrases. We removed the main temporal cues to phrasal structures, so that listeners could only rely on harmonic information to parse a continuous musical stream. Phrasal structures were disrupted by locally or globally reversing the harmonic progression, so that our observations on the original music could be controlled and compared. We first replicated the findings on neural tracking of musical notes and beats, substantiating the positive correlation between musical training and neural tracking. Critically, we discovered a neural signature in the frequency range around 0.1 Hz (modulations of EEG power) that reliably tracks musical phrasal structure. Next, we developed an approach to quantify the phrasal phase precession of the EEG power, revealing that phrase tracking is indeed an operation of active segmentation involving predictive processes. We demonstrate that the brain establishes complex musical structures online over long timescales (>5 seconds) and actively segments continuous music streams in a manner comparable to language processing. These two neural signatures, phrase tracking and phrasal phase precession, provide new conceptual and technical tools to study the processes underpinning high-level structure building using non-invasive recording techniques. Significance statement Many music types are characterized by complex, hierarchical structures that evolve over time, requiring listeners to construct high-level musical structures, anticipate future content, and track notes and beats. There exists little evidence of how the brain performs online structural-level musical segmentation and prediction. This study reveals an ultralow-frequency neural component that modulates beat tracking and reliably correlates with parsing musical phrases. We further identified a phenomenon called "phrase phase precession," indicating that listeners use the ongoing listening experience to build structural predictions and track phrase boundaries. This study provides new conceptual and technical tools for studying the operation underlying structure building in various abstract musical features, using non-invasive recording techniques such as EEG or MEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
仁爱听露发布了新的文献求助10
2秒前
3秒前
开朗曲奇完成签到,获得积分10
5秒前
7秒前
8秒前
文欣完成签到 ,获得积分10
8秒前
韩涵发布了新的文献求助10
11秒前
read完成签到,获得积分10
11秒前
12秒前
12秒前
qq完成签到,获得积分10
12秒前
柯一一应助赵哈哈采纳,获得10
13秒前
13秒前
完美世界应助小卜采纳,获得10
14秒前
慕青应助iNk采纳,获得10
14秒前
万卓仁发布了新的文献求助10
15秒前
满意冷荷发布了新的文献求助10
15秒前
ZZ发布了新的文献求助10
16秒前
16秒前
19秒前
Owen应助Leon采纳,获得10
19秒前
20秒前
20秒前
22秒前
科研通AI5应助外向宛菡采纳,获得10
24秒前
24秒前
24秒前
危机的井发布了新的文献求助10
25秒前
25秒前
长孙巧凡完成签到,获得积分0
25秒前
25秒前
热心醉蝶完成签到,获得积分10
26秒前
SL发布了新的文献求助10
26秒前
26秒前
27秒前
27秒前
27秒前
28秒前
Leon发布了新的文献求助10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Microbiology and Health Benefits of Traditional Alcoholic Beverages 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979984
求助须知:如何正确求助?哪些是违规求助? 3524121
关于积分的说明 11219921
捐赠科研通 3261562
什么是DOI,文献DOI怎么找? 1800703
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232