Network macroscopic fundamental diagram-informed graph learning for traffic state imputation

插补(统计学) 计算机科学 图形 统计物理学 理论计算机科学 机器学习 物理 缺少数据
作者
Jiawei Xue,Eunhan Ka,Yiheng Feng,Satish V. Ukkusuri
出处
期刊:Transportation Research Part B-methodological [Elsevier BV]
卷期号:: 102996-102996 被引量:2
标识
DOI:10.1016/j.trb.2024.102996
摘要

Traffic state imputation refers to the estimation of missing values of traffic variables, such as flow rate and traffic density, using available data. It furnishes comprehensive traffic context for various operation tasks such as vehicle routing, and enables us to augment existing datasets (e.g., PeMS, UTD19, Uber Movement) for diverse theoretical and practical investigations. Despite the superior performance achieved by purely data-driven methods, they are subject to two limitations. One limitation is the absence of a traffic engineering-level interpretation in the model architecture, as it fails to elucidate the methodology behind deriving imputation results from a traffic engineering standpoint. The other limitation is the possibility that imputation results may violate traffic flow theories, thereby yielding unreliable outcomes for transportation engineers. In this study, we introduce NMFD-GNN, a physics-informed machine learning method that fuses the network macroscopic fundamental diagram (NMFD) with the graph neural network (GNN), to perform traffic state imputation. Specifically, we construct the graph learning module that captures the spatio-temporal dependency of traffic congestion. Besides, we develop the physics-informed module based on the λ-trapezoidal MFD, which presents a functional form of NMFD and was formulated by transportation researchers in 2020. The primary contribution of NMFD-GNN lies in being the first physics-informed machine learning model specifically designed for real-world traffic networks with multiple roads, while existing studies have primarily focused on individual road corridors. We evaluate the performance of NMFD-GNN by conducting experiments on real-world traffic networks located in Zurich and London, utilizing the UTD19 dataset 1. The results indicate that our NMFD-GNN outperforms six baseline models in terms of performance in traffic state imputation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pppy发布了新的文献求助10
刚刚
lhx发布了新的文献求助10
刚刚
刚刚
lihailong发布了新的文献求助10
刚刚
熠熠发布了新的文献求助10
1秒前
xiaoming发布了新的文献求助10
1秒前
eltiempo完成签到 ,获得积分10
1秒前
烟花应助小佳采纳,获得10
2秒前
Drtaoao完成签到 ,获得积分10
2秒前
科研通AI2S应助wei采纳,获得10
2秒前
3秒前
依古比古完成签到,获得积分10
3秒前
无情向薇应助linguobin采纳,获得10
3秒前
YW完成签到,获得积分10
3秒前
4秒前
4秒前
崔伟发布了新的文献求助10
4秒前
小葛完成签到,获得积分10
4秒前
shao应助54zxy采纳,获得10
4秒前
觉皇完成签到,获得积分10
5秒前
5秒前
韩soso发布了新的文献求助10
5秒前
我是老大应助伍教授采纳,获得10
5秒前
偏我来时不逢春完成签到,获得积分10
6秒前
爆螺钉发布了新的文献求助10
6秒前
Owen应助Erling采纳,获得10
7秒前
打屁飞完成签到,获得积分10
7秒前
二十五发布了新的文献求助20
8秒前
linnn完成签到,获得积分10
8秒前
10秒前
一个火蓉果啊完成签到,获得积分10
10秒前
菠萝炒饭应助典雅的苗条采纳,获得10
10秒前
FUTURE发布了新的文献求助10
10秒前
立na完成签到,获得积分10
10秒前
11秒前
liuli完成签到 ,获得积分10
11秒前
Loong完成签到,获得积分10
11秒前
珠珠崽子完成签到 ,获得积分10
11秒前
EmmaZhu完成签到,获得积分10
12秒前
xima完成签到 ,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198