EEG emotion recognition based on data-driven signal auto-segmentation and feature fusion

模式识别(心理学) 脑电图 人工智能 分割 情绪识别 特征(语言学) 计算机科学 语音识别 信号(编程语言) 心理学 神经科学 语言学 哲学 程序设计语言
作者
Yunyuan Gao,Zehao Zhu,Feng Fang,Yingchun Zhang,Ming Meng
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:361: 356-366 被引量:4
标识
DOI:10.1016/j.jad.2024.06.042
摘要

Pattern recognition based on network connections has recently been applied to the brain-computer interface (BCI) research, offering new ideas for emotion recognition using Electroencephalogram (EEG) signal. However unified standards are currently lacking for selecting emotional signals in emotion recognition research, and potential associations between activation differences in brain regions and network connectivity pattern are often being overlooked. To bridge this technical gap, a data-driven signal auto-segmentation and feature fusion algorithm (DASF) is proposed in this paper. First, the Phase Locking Value (PLV) method was used to construct the brain functional adjacency matrix of each subject, and the dynamic brain functional network across subjects was then constructed. Next, tucker decomposition was performed and the Grassmann distance of the connectivity submatrix was calculated. Subsequently, different brain network states were distinguished and signal segments under emotional states were automatically extract using data-driven methods. Then, tensor sparse representation was adopted on the intercepted EEG signals to effectively extract functional connections under different emotional states. Finally, power-distribution related features (differential entropy and energy feature) and brain functional connection features were effectively combined for classification using the support vector machines (SVM) classifier. The proposed method was validated on ERN and DEAP datasets. The single-feature emotion classification accuracy of 86.57 % and 87.74 % were achieved on valence and arousal dimensions, respectively. The accuracy of the proposed feature fusion method was achieved at 89.14 % and 89.65 %, accordingly, demonstrating an improvement in emotion recognition accuracy. The results demonstrated the superior classification performance of the proposed data-driven signal auto-segmentation and feature fusion algorithm in emotion recognition compared to state-of-the-art classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助zyyyyyu采纳,获得10
刚刚
高某完成签到,获得积分10
刚刚
ffiu完成签到,获得积分10
刚刚
马丝雨完成签到,获得积分10
刚刚
优雅的雁凡完成签到,获得积分10
刚刚
化学小学生完成签到,获得积分10
刚刚
小二郎应助Sunrise采纳,获得10
刚刚
minino完成签到 ,获得积分10
刚刚
1秒前
roselau完成签到,获得积分10
1秒前
JusT完成签到 ,获得积分0
1秒前
苏格拉底的嘲笑完成签到,获得积分10
2秒前
2秒前
魔幻若血完成签到,获得积分10
2秒前
冬雪完成签到,获得积分10
3秒前
hdd完成签到,获得积分10
3秒前
田様应助简单平松采纳,获得10
3秒前
耀学菜菜发布了新的文献求助30
3秒前
阳光友瑶完成签到,获得积分10
4秒前
阿福发布了新的文献求助10
5秒前
起朱楼应助阿辉采纳,获得20
5秒前
灵巧一笑完成签到 ,获得积分10
7秒前
火星上友易完成签到,获得积分10
7秒前
7秒前
星星完成签到,获得积分10
8秒前
微笑向卉完成签到,获得积分20
8秒前
M20小陈完成签到,获得积分10
8秒前
xff完成签到 ,获得积分10
8秒前
9秒前
很傻的狗完成签到,获得积分10
9秒前
彭于晏应助俊逸的尔芙采纳,获得10
9秒前
Nara2021完成签到,获得积分10
9秒前
你好纠结伦完成签到,获得积分10
9秒前
fantasy完成签到 ,获得积分10
10秒前
冷静橘子完成签到,获得积分10
10秒前
俏皮的电脑完成签到,获得积分10
11秒前
Sunrise完成签到,获得积分10
11秒前
大月发布了新的文献求助10
11秒前
11秒前
东东东发布了新的文献求助20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855