EEG emotion recognition based on data-driven signal auto-segmentation and feature fusion

模式识别(心理学) 脑电图 人工智能 分割 情绪识别 特征(语言学) 计算机科学 语音识别 信号(编程语言) 心理学 神经科学 语言学 哲学 程序设计语言
作者
Yunyuan Gao,Zehao Zhu,Feng Fang,Yingchun Zhang,Ming Meng
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:361: 356-366 被引量:2
标识
DOI:10.1016/j.jad.2024.06.042
摘要

Pattern recognition based on network connections has recently been applied to the brain-computer interface (BCI) research, offering new ideas for emotion recognition using Electroencephalogram (EEG) signal. However unified standards are currently lacking for selecting emotional signals in emotion recognition research, and potential associations between activation differences in brain regions and network connectivity pattern are often being overlooked. To bridge this technical gap, a data-driven signal auto-segmentation and feature fusion algorithm (DASF) is proposed in this paper. First, the Phase Locking Value (PLV) method was used to construct the brain functional adjacency matrix of each subject, and the dynamic brain functional network across subjects was then constructed. Next, tucker decomposition was performed and the Grassmann distance of the connectivity submatrix was calculated. Subsequently, different brain network states were distinguished and signal segments under emotional states were automatically extract using data-driven methods. Then, tensor sparse representation was adopted on the intercepted EEG signals to effectively extract functional connections under different emotional states. Finally, power-distribution related features (differential entropy and energy feature) and brain functional connection features were effectively combined for classification using the support vector machines (SVM) classifier. The proposed method was validated on ERN and DEAP datasets. The single-feature emotion classification accuracy of 86.57 % and 87.74 % were achieved on valence and arousal dimensions, respectively. The accuracy of the proposed feature fusion method was achieved at 89.14 % and 89.65 %, accordingly, demonstrating an improvement in emotion recognition accuracy. The results demonstrated the superior classification performance of the proposed data-driven signal auto-segmentation and feature fusion algorithm in emotion recognition compared to state-of-the-art classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jialin发布了新的文献求助10
刚刚
3秒前
3秒前
jialin完成签到,获得积分10
5秒前
罗伯特发布了新的文献求助10
6秒前
zhaochenyu完成签到,获得积分10
7秒前
haan发布了新的文献求助10
7秒前
小千完成签到 ,获得积分10
8秒前
9秒前
9秒前
12秒前
sora98完成签到 ,获得积分10
12秒前
充电宝应助RC采纳,获得10
13秒前
田様应助刘锦裕采纳,获得10
13秒前
星辰大海应助sdnihbhew采纳,获得10
14秒前
14秒前
囧囧应助宇航采纳,获得100
14秒前
15秒前
YifanWang应助积极的千雁采纳,获得30
15秒前
好好科研~发布了新的文献求助10
16秒前
小马甲应助洛洛采纳,获得10
16秒前
凉小天发布了新的文献求助10
17秒前
畅快访旋应助lerrygg采纳,获得40
17秒前
烟花应助xuyan采纳,获得10
17秒前
RC发布了新的文献求助10
18秒前
Michael-布莱恩特完成签到,获得积分10
19秒前
19秒前
20秒前
21秒前
icenow完成签到,获得积分20
21秒前
21秒前
RC完成签到,获得积分10
22秒前
23秒前
Ava应助科研通管家采纳,获得10
23秒前
张益萌应助科研通管家采纳,获得30
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
Lucas应助科研通管家采纳,获得10
23秒前
NexusExplorer应助haan采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
无花果应助科研通管家采纳,获得10
24秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330054
求助须知:如何正确求助?哪些是违规求助? 2959691
关于积分的说明 8596435
捐赠科研通 2638078
什么是DOI,文献DOI怎么找? 1444156
科研通“疑难数据库(出版商)”最低求助积分说明 668964
邀请新用户注册赠送积分活动 656559