Room-temperature superelasticity in Mg–Sc shape memory alloys revealed by first-principles calculations

假弹性 形状记忆合金 材料科学 热力学 冶金 物理 马氏体 微观结构
作者
Haosen Yuan,Wenbin Zhao,Hangyuan Zhang,Zhihang Fan,Xiaohua Tian,Kun Zhang,Changlong Tan
出处
期刊:Journal of materials research and technology [Elsevier]
卷期号:30: 9592-9600
标识
DOI:10.1016/j.jmrt.2024.06.051
摘要

The discovery of the Mg–Sc shape memory alloy system has become a milestone in the development of lightweight shape memory alloys. However, for the application scenarios with the highest demand at room temperature, the Mg–Sc alloy faces problems such as excessively low phase transition temperatures and poor room-temperature superelasticity, directly hindering the practical application of this new type of lightweight memory alloy. In this work, Mg–Sc based shape memory alloys with exceptional room temperature superelasticity have been screened for the first time utilizing Tm, phase transformation strain, and stress-strain curves. Co and Ge are selected as the most promising elements for improving Mg–Sc based alloys at room temperature. Furthermore, the mechanism behind the superelasticity of Mg–Sc alloy has been systematically unveiled and the average rate of energy change per unit time of the alloys was calculated for the first time. Co doped Mg–Sc based alloys exhibited the lowest variations in the average rate of energy change per unit time, Helmholtz free energy, and M1, along with a higher charge density between Co and Sc atoms. Additionally, a coupling effect between the d orbital of Co and Sc electrons and a lowered Fermi level was observed. These findings demonstrate that Co doping in Mg–Sc based alloys significantly reduces the superelastic hysteresis area and transformation driving force, and increases Tm and strain, thereby enhancing superelasticity. This research guides further studies and the design of new Mg–Sc based lightweight SMAs with outstanding superelasticity at room temperature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助lll采纳,获得10
刚刚
Mia应助Tiannn采纳,获得10
刚刚
拉长的湘完成签到,获得积分10
刚刚
忍冬发布了新的文献求助10
刚刚
酷波er应助TvTiing采纳,获得10
1秒前
qize完成签到,获得积分10
2秒前
菠萝发布了新的文献求助10
2秒前
2秒前
neckerzhu发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
JamesPei应助PSA采纳,获得10
2秒前
2秒前
充电宝应助顺利的慕儿采纳,获得10
3秒前
小砾狗狗完成签到,获得积分10
3秒前
酷炫鸿完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
南寻发布了新的文献求助10
4秒前
不吃曹莓可爱多关注了科研通微信公众号
4秒前
lalala应助木木采纳,获得10
4秒前
4秒前
5秒前
杂粮米发布了新的文献求助10
5秒前
chunfengfusu发布了新的文献求助15
5秒前
饭11111111完成签到,获得积分10
5秒前
芒go完成签到,获得积分10
5秒前
汉堡包应助乐观化蛹采纳,获得10
5秒前
受伤芝麻完成签到,获得积分10
6秒前
幽默的煎饼完成签到,获得积分10
7秒前
rgb001完成签到,获得积分10
8秒前
momo完成签到,获得积分10
8秒前
9秒前
曲线发布了新的文献求助10
9秒前
zhang发布了新的文献求助10
9秒前
大翟完成签到 ,获得积分10
9秒前
菜园子完成签到,获得积分10
9秒前
迷人书蝶发布了新的文献求助10
10秒前
公子小白完成签到,获得积分10
10秒前
着慵懒时光的猫完成签到,获得积分10
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659263
求助须知:如何正确求助?哪些是违规求助? 4828262
关于积分的说明 15086235
捐赠科研通 4817957
什么是DOI,文献DOI怎么找? 2578418
邀请新用户注册赠送积分活动 1533076
关于科研通互助平台的介绍 1491767