Room-temperature superelasticity in Mg–Sc shape memory alloys revealed by first-principles calculations

假弹性 形状记忆合金 材料科学 热力学 冶金 物理 马氏体 微观结构
作者
Haosen Yuan,Wenbin Zhao,Hangyuan Zhang,Zhihang Fan,Xiaohua Tian,Kun Zhang,Changlong Tan
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:30: 9592-9600
标识
DOI:10.1016/j.jmrt.2024.06.051
摘要

The discovery of the Mg–Sc shape memory alloy system has become a milestone in the development of lightweight shape memory alloys. However, for the application scenarios with the highest demand at room temperature, the Mg–Sc alloy faces problems such as excessively low phase transition temperatures and poor room-temperature superelasticity, directly hindering the practical application of this new type of lightweight memory alloy. In this work, Mg–Sc based shape memory alloys with exceptional room temperature superelasticity have been screened for the first time utilizing Tm, phase transformation strain, and stress-strain curves. Co and Ge are selected as the most promising elements for improving Mg–Sc based alloys at room temperature. Furthermore, the mechanism behind the superelasticity of Mg–Sc alloy has been systematically unveiled and the average rate of energy change per unit time of the alloys was calculated for the first time. Co doped Mg–Sc based alloys exhibited the lowest variations in the average rate of energy change per unit time, Helmholtz free energy, and M1, along with a higher charge density between Co and Sc atoms. Additionally, a coupling effect between the d orbital of Co and Sc electrons and a lowered Fermi level was observed. These findings demonstrate that Co doping in Mg–Sc based alloys significantly reduces the superelastic hysteresis area and transformation driving force, and increases Tm and strain, thereby enhancing superelasticity. This research guides further studies and the design of new Mg–Sc based lightweight SMAs with outstanding superelasticity at room temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜机器猫完成签到,获得积分10
刚刚
Lucas应助理想采纳,获得10
1秒前
1秒前
1秒前
唠叨的从梦完成签到,获得积分10
2秒前
lz完成签到,获得积分10
2秒前
木木完成签到,获得积分10
2秒前
jiqihao发布了新的文献求助10
2秒前
3秒前
4秒前
黎俊发布了新的文献求助10
4秒前
4秒前
4秒前
云叶完成签到,获得积分10
5秒前
Orange应助彤彤采纳,获得10
6秒前
6秒前
yuanmay发布了新的文献求助10
7秒前
平常梦桃发布了新的文献求助10
7秒前
En应助鲤鱼诗桃采纳,获得10
8秒前
我是老大应助鲤鱼诗桃采纳,获得10
8秒前
量子星尘发布了新的文献求助150
9秒前
朱泳钦完成签到,获得积分10
9秒前
qwerty发布了新的文献求助50
9秒前
SADD发布了新的文献求助10
9秒前
领导范儿应助西子阳采纳,获得10
9秒前
张建路发布了新的文献求助20
9秒前
汉堡包应助西子阳采纳,获得10
9秒前
李健的小迷弟应助西子阳采纳,获得10
10秒前
yyd发布了新的文献求助10
11秒前
13秒前
13秒前
13秒前
迅速的映冬关注了科研通微信公众号
13秒前
Candice完成签到,获得积分10
15秒前
JiangyingYu发布了新的文献求助50
16秒前
理想完成签到,获得积分20
16秒前
cardiology完成签到,获得积分10
16秒前
16秒前
Xu完成签到,获得积分10
17秒前
彭于晏应助彤彤采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089228
求助须知:如何正确求助?哪些是违规求助? 4304013
关于积分的说明 13413247
捐赠科研通 4129680
什么是DOI,文献DOI怎么找? 2261670
邀请新用户注册赠送积分活动 1265742
关于科研通互助平台的介绍 1200344