双金属片
金属有机骨架
人工智能
化学
析氧
金属
计算机科学
数据挖掘
有机化学
物理化学
电极
电化学
吸附
作者
Zhou Jian,Liangliang Xu,Huiyu Gai,Ning Xu,Zhichu Ren,Xianbiao Hou,Zongkun Chen,Zhongkang Han,Debalaya Sarker,Sergey V. Levchenko,Minghua Huang
标识
DOI:10.1002/anie.202409449
摘要
The development of readily accessible and interpretable descriptors is pivotal yet challenging in the rational design of metal-organic framework (MOF) catalysts. This study presents a straightforward and physically interpretable activity descriptor for the oxygen evolution reaction (OER), derived from a dataset of bimetallic Ni-based MOFs. Through an artificial-intelligence (AI) data-mining subgroup discovery (SGD) approach, a combination of the d-band center and number of missing electrons in e
科研通智能强力驱动
Strongly Powered by AbleSci AI