Enhancing Precision in Cardiac Segmentation for MR-Guided Radiation Therapy through Deep Learning

分割 深度学习 人工智能 放射治疗 医学 医学物理学 计算机科学 放射科
作者
Nicholas Summerfield,Eric D. Morris,Soumyanil Banerjee,Qisheng He,A.I. Ghanem,Simeng Zhu,Jiwei Zhao,Ming Dong,Carri Glide‐Hurst
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
标识
DOI:10.1016/j.ijrobp.2024.05.013
摘要

Introduction Cardiac substructure dose metrics are more strongly linked to late cardiac morbidities than whole-heart metrics. MR-guided radiation therapy (MRgRT) enables substructure visualization during daily localization, allowing potential for enhanced cardiac sparing. We extend a publicly available state-of-the-art deep learning (DL) framework, nnU-Net, to incorporate self-distillation (nnU-Net.wSD) for substructure segmentation for MRgRT. Methods Eighteen (Institute A) patients who underwent thoracic or abdominal radiation therapy on a 0.35 T MR-guided linac were retrospectively evaluated. On each image, one of two radiation oncologists delineated reference contours of 12 cardiac substructures (chambers, great vessels, and coronary arteries) used to train (n=10), validate (n=3), and test (n=5) nnU-Net.wSD leveraging a teacher-student network and comparing to standard 3D U-Net. The impact of using simulation data or including 3-4 daily images for augmentation during training was evaluated for nnU-Net.wSD. Geometric metrics (Dice similarity coefficient (DSC), mean distance to agreement (MDA), and 95% Hausdorff distance (HD95)), visual inspection, and clinical dose volume histograms (DVHs) were evaluated. To determine generalizability, Institute A's model was tested on an unlabeled dataset from Institute B (n=22) and evaluated via consensus scoring and volume comparisons. Results nnU-Net.wSD yielded a DSC (reported mean ± standard deviation) of 0.65±0.25 across the 12 substructures (Chambers: 0.85±0.05, Great Vessels: 0.67±0.19, and Coronary Arteries 0.33±0.16, mean MDA <3 mm, and mean HD95 <9 mm) while outperforming the 3D U-Net (0.583±0.28, p<0.01). Leveraging fractionated data for augmentation improved over a single MR-SIM timepoint (0.579±0.29, p<0.01). Predicted contours yielded DVHs that closely matched the clinical treatment plans where mean and D0.03cc doses deviated by 0.32±0.5 Gy and 1.42±2.6 Gy respectively. No statistically significant differences between Institute A and B volumes (p>0.05) for 11 of 12 substructures with larger volumes requiring minor changes and coronary arteries exhibiting more variability. Conclusions This work is a critical step to rapid and reliable cardiac substructure segmentation to improve cardiac sparing in low-field MRgRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱小哪吒完成签到,获得积分10
刚刚
zpz完成签到,获得积分10
1秒前
别水笙发布了新的文献求助10
2秒前
ZBM完成签到,获得积分10
2秒前
3秒前
lxh完成签到,获得积分10
3秒前
Master_Ye完成签到,获得积分10
3秒前
迟迟不吃吃完成签到 ,获得积分10
4秒前
小星星完成签到 ,获得积分10
4秒前
Hunter完成签到,获得积分10
4秒前
小李找文献完成签到,获得积分10
5秒前
CoCoco完成签到 ,获得积分10
5秒前
希望天下0贩的0应助广子采纳,获得10
6秒前
yydragen应助核桃采纳,获得50
6秒前
lit发布了新的文献求助10
7秒前
动听的秋白完成签到 ,获得积分10
8秒前
8秒前
10秒前
满意尔安完成签到,获得积分0
10秒前
MaYi完成签到,获得积分10
10秒前
shi0331完成签到,获得积分10
10秒前
手握灵珠常奋笔完成签到,获得积分10
12秒前
疑问师完成签到,获得积分10
12秒前
虚拟的日记本完成签到 ,获得积分10
12秒前
小狗说好运来完成签到 ,获得积分10
13秒前
13秒前
baolipao完成签到,获得积分10
14秒前
shin0324完成签到,获得积分10
14秒前
A晨完成签到,获得积分10
15秒前
虚幻沛文完成签到 ,获得积分10
15秒前
15秒前
火之高兴完成签到 ,获得积分10
16秒前
微风完成签到,获得积分10
17秒前
小鱼完成签到,获得积分10
19秒前
整齐的凡梦完成签到,获得积分10
19秒前
20秒前
伶俐问薇完成签到,获得积分10
20秒前
jyu完成签到,获得积分10
21秒前
LJD完成签到,获得积分10
22秒前
机智的凡梦完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960229
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129617
捐赠科研通 3238551
什么是DOI,文献DOI怎么找? 1789817
邀请新用户注册赠送积分活动 871918
科研通“疑难数据库(出版商)”最低求助积分说明 803099