Enhancing Precision in Cardiac Segmentation for MR-Guided Radiation Therapy through Deep Learning

分割 深度学习 人工智能 放射治疗 医学 医学物理学 计算机科学 放射科
作者
Nicholas Summerfield,Eric D. Morris,Soumyanil Banerjee,Qisheng He,A.I. Ghanem,Simeng Zhu,Jiwei Zhao,Ming Dong,Carri Glide‐Hurst
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
标识
DOI:10.1016/j.ijrobp.2024.05.013
摘要

Introduction Cardiac substructure dose metrics are more strongly linked to late cardiac morbidities than whole-heart metrics. MR-guided radiation therapy (MRgRT) enables substructure visualization during daily localization, allowing potential for enhanced cardiac sparing. We extend a publicly available state-of-the-art deep learning (DL) framework, nnU-Net, to incorporate self-distillation (nnU-Net.wSD) for substructure segmentation for MRgRT. Methods Eighteen (Institute A) patients who underwent thoracic or abdominal radiation therapy on a 0.35 T MR-guided linac were retrospectively evaluated. On each image, one of two radiation oncologists delineated reference contours of 12 cardiac substructures (chambers, great vessels, and coronary arteries) used to train (n=10), validate (n=3), and test (n=5) nnU-Net.wSD leveraging a teacher-student network and comparing to standard 3D U-Net. The impact of using simulation data or including 3-4 daily images for augmentation during training was evaluated for nnU-Net.wSD. Geometric metrics (Dice similarity coefficient (DSC), mean distance to agreement (MDA), and 95% Hausdorff distance (HD95)), visual inspection, and clinical dose volume histograms (DVHs) were evaluated. To determine generalizability, Institute A's model was tested on an unlabeled dataset from Institute B (n=22) and evaluated via consensus scoring and volume comparisons. Results nnU-Net.wSD yielded a DSC (reported mean ± standard deviation) of 0.65±0.25 across the 12 substructures (Chambers: 0.85±0.05, Great Vessels: 0.67±0.19, and Coronary Arteries 0.33±0.16, mean MDA <3 mm, and mean HD95 <9 mm) while outperforming the 3D U-Net (0.583±0.28, p<0.01). Leveraging fractionated data for augmentation improved over a single MR-SIM timepoint (0.579±0.29, p<0.01). Predicted contours yielded DVHs that closely matched the clinical treatment plans where mean and D0.03cc doses deviated by 0.32±0.5 Gy and 1.42±2.6 Gy respectively. No statistically significant differences between Institute A and B volumes (p>0.05) for 11 of 12 substructures with larger volumes requiring minor changes and coronary arteries exhibiting more variability. Conclusions This work is a critical step to rapid and reliable cardiac substructure segmentation to improve cardiac sparing in low-field MRgRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sea发布了新的文献求助10
刚刚
刚刚
苏菲完成签到 ,获得积分10
1秒前
科研通AI2S应助Bismarck采纳,获得10
1秒前
研友_LX66qZ完成签到,获得积分10
1秒前
友好寻琴完成签到,获得积分10
3秒前
沐沐发布了新的文献求助10
3秒前
十二发布了新的文献求助10
3秒前
6秒前
Ecc完成签到,获得积分10
6秒前
qing_he应助活力的镜子采纳,获得10
7秒前
孤鸿.完成签到 ,获得积分10
8秒前
lh完成签到,获得积分10
8秒前
10秒前
ZFW完成签到 ,获得积分10
11秒前
11秒前
qaz发布了新的文献求助10
11秒前
13秒前
six完成签到,获得积分10
13秒前
高小h发布了新的文献求助10
15秒前
阳光海云发布了新的文献求助30
16秒前
18秒前
18秒前
风之子发布了新的文献求助10
19秒前
fengqing完成签到,获得积分10
20秒前
hatizhao发布了新的文献求助10
21秒前
务实的凝天完成签到,获得积分10
22秒前
xxm完成签到,获得积分10
24秒前
jx完成签到 ,获得积分10
25秒前
25秒前
25秒前
风之子完成签到,获得积分10
26秒前
小小狗完成签到,获得积分10
27秒前
无情的菲鹰完成签到,获得积分10
27秒前
29秒前
不爱干饭发布了新的文献求助10
29秒前
秋辞完成签到,获得积分10
30秒前
火星上芹菜完成签到,获得积分10
32秒前
发嗲的雨筠完成签到,获得积分10
34秒前
Chiier发布了新的文献求助10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140593
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798857
捐赠科研通 2447772
什么是DOI,文献DOI怎么找? 1302046
科研通“疑难数据库(出版商)”最低求助积分说明 626434
版权声明 601194