Highly enhanced Quantum dot light-emitting diode performance by controlling energy resonance in inorganic insertion layers

量子点 光电子学 发光二极管 二极管 共振(粒子物理) 材料科学 能量(信号处理) 物理 原子物理学 量子力学
作者
Zongyi Meng,Zunxian Yang,Yuliang Ye,Zhen Zeng,Hongyi Hong,Songwei Ye,Zhiming Cheng,Qianting Lan,Li Wang,Ye Chen,Hui Zhang,Y. Bai,Xudong Jiang,Benfang Liu,Jae Won Hong,Tailiang Guo,Fushan Li,Yongyi Chen,Zhenzhen Weng
出处
期刊:Optical Materials [Elsevier]
卷期号:152: 115510-115510
标识
DOI:10.1016/j.optmat.2024.115510
摘要

Quantum-dot light-emitting diodes (QLED) have become a research trend in the field of new displays due to their low cost, wide color gamut, narrow bandwidth, and characteristics that enable production through the solution-gel method. However, the electrical performance of QLED is consistently constrained by energy losses and imbalanced charge carrier injection. This motivates our focus on exciton recombination and energy losses within the quantum-dot layer to enhance the electrical efficiency of QLED. In this work, we introduce a method using a CdZnS quantum dot (B-QD) interlayer to modulate energy transfer and charge carrier transport in QLED devices employing CdSe quantum dot (G-QD) as the emissive layer. By strategically incorporating a B-QD layer between the G-QD and HTL/ETL, we facilitate energy transfer due to the overlap between the excitation wavelength of B-QD and the absorption wavelength of G-QDs. This leads to enhanced energy injection in QLED devices, resulting in a high current efficiency of 39.54 Cd/A and a peak brightness of 522,272 cd/m2 for efficient QLED. The corresponding external quantum efficiency (EQE) is greatly improved from 5.62 % to 9.4 %. Our work provides a straightforward and effective approach to modulate exciton recombination and energy injection and further can be applicable to other photo-electronics devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的海发布了新的文献求助10
2秒前
打打应助草木采纳,获得10
2秒前
2秒前
3秒前
胡慧婷完成签到 ,获得积分10
4秒前
如常完成签到,获得积分10
5秒前
偏偏海完成签到,获得积分10
5秒前
yuki完成签到 ,获得积分10
5秒前
5秒前
踏实幻竹发布了新的文献求助10
6秒前
海德堡完成签到,获得积分10
6秒前
6秒前
lqy完成签到,获得积分10
6秒前
6秒前
shuoye发布了新的文献求助30
6秒前
6秒前
田様应助gsit采纳,获得10
6秒前
7秒前
希望天下0贩的0应助水123采纳,获得10
8秒前
9秒前
9秒前
leey发布了新的文献求助10
10秒前
lqy发布了新的文献求助10
11秒前
wang发布了新的文献求助10
11秒前
洪豆豆完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
SciGPT应助aaa采纳,获得30
15秒前
豆子发布了新的文献求助10
16秒前
Bonaventure完成签到,获得积分10
17秒前
leey完成签到,获得积分10
17秒前
调皮帆布鞋完成签到,获得积分10
19秒前
你都至少信我八分吧完成签到 ,获得积分10
20秒前
Luffa完成签到,获得积分10
22秒前
23秒前
23秒前
rsimap360完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
一丁点可爱完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603799
求助须知:如何正确求助?哪些是违规求助? 4688754
关于积分的说明 14855835
捐赠科研通 4695101
什么是DOI,文献DOI怎么找? 2540987
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814