Highly enhanced Quantum dot light-emitting diode performance by controlling energy resonance in inorganic insertion layers

量子点 光电子学 发光二极管 二极管 共振(粒子物理) 材料科学 能量(信号处理) 物理 原子物理学 量子力学
作者
Zongyi Meng,Zunxian Yang,Yuliang Ye,Zhen Zeng,Hongyi Hong,Songwei Ye,Zhiming Cheng,Qianting Lan,Li Wang,Ye Chen,Hui Zhang,Y. Bai,Xudong Jiang,Benfang Liu,Jae Won Hong,Tailiang Guo,Fushan Li,Yongyi Chen,Zhenzhen Weng
出处
期刊:Optical Materials [Elsevier]
卷期号:152: 115510-115510
标识
DOI:10.1016/j.optmat.2024.115510
摘要

Quantum-dot light-emitting diodes (QLED) have become a research trend in the field of new displays due to their low cost, wide color gamut, narrow bandwidth, and characteristics that enable production through the solution-gel method. However, the electrical performance of QLED is consistently constrained by energy losses and imbalanced charge carrier injection. This motivates our focus on exciton recombination and energy losses within the quantum-dot layer to enhance the electrical efficiency of QLED. In this work, we introduce a method using a CdZnS quantum dot (B-QD) interlayer to modulate energy transfer and charge carrier transport in QLED devices employing CdSe quantum dot (G-QD) as the emissive layer. By strategically incorporating a B-QD layer between the G-QD and HTL/ETL, we facilitate energy transfer due to the overlap between the excitation wavelength of B-QD and the absorption wavelength of G-QDs. This leads to enhanced energy injection in QLED devices, resulting in a high current efficiency of 39.54 Cd/A and a peak brightness of 522,272 cd/m2 for efficient QLED. The corresponding external quantum efficiency (EQE) is greatly improved from 5.62 % to 9.4 %. Our work provides a straightforward and effective approach to modulate exciton recombination and energy injection and further can be applicable to other photo-electronics devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gg完成签到,获得积分10
刚刚
瞬间完成签到 ,获得积分10
刚刚
Hello paper完成签到,获得积分10
1秒前
1秒前
demonox完成签到,获得积分10
1秒前
乐乐应助奔奔采纳,获得10
2秒前
4秒前
4秒前
科研通AI5应助SCI采纳,获得10
4秒前
科研通AI5应助hobowei采纳,获得10
7秒前
可爱奇异果完成签到 ,获得积分10
7秒前
wang发布了新的文献求助10
8秒前
太空人完成签到,获得积分10
8秒前
123发布了新的文献求助10
9秒前
10秒前
该睡觉啦完成签到,获得积分20
10秒前
10秒前
莫x莫完成签到 ,获得积分10
12秒前
loewy完成签到,获得积分10
12秒前
黄婷发布了新的文献求助10
12秒前
12秒前
yuan完成签到,获得积分10
12秒前
zho发布了新的文献求助10
12秒前
12秒前
苏苏完成签到,获得积分10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得80
13秒前
Hello应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
万能图书馆应助内向秋寒采纳,获得10
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
zzzq应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得30
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794