土工布
聚丙烯
渗滤液
环境化学
聚酯纤维
环境科学
化学
制浆造纸工业
废物管理
岩土工程
地质学
有机化学
工程类
作者
Elissar Mikhael,Abdelmalek Bouazza,Will P. Gates,Daniel Gibbs
标识
DOI:10.1021/acs.est.2c08987
摘要
We investigated the presence of per- and poly fluoroalkyl substances (PFASs) in woven and nonwoven polypropylene geotextiles and four nonwoven polyester geotextiles commonly used in modern geosynthetic composite lining systems for waste containment facilities such as landfills. Targeted analysis for 23 environmentally significant PFAS molecules and methods for examining "PFAS total" concentrations were utilized to assess their occurrence in geotextiles. This analysis showed that most geotextile specimens evaluated in the current investigation contained the ultrashort chain PFAS compound pentafluoropropionic acid (PFPrA). While the concentrations ranged from nondetectable to 10.84 μg/g, the average measured concentrations of PFPrA were higher in polypropylene than in polyester geotextiles. "PFAS total" parameters comprising total fluorine (TF) and total oxidizable precursors (TOPs) indicate that no significant precursor mass nor untargeted intermediates were present in geotextiles. Therefore, this study identified geotextiles as a possible source of ultrashort PFASs in engineered lined waste containment facilities, which may contribute to the overall PFAS total concentrations in leachates or liquors they are in contact with. The findings reported for the first time herein may lead to further implications on the fate and migration of PFASs in geosynthetic composite liners, as previously unidentified concentrations, particularly of ultrashort-chain PFASs, may impact the extent of PFAS migration through and attenuation by constituents of geosynthetic composite liner systems. Given the widespread use of geotextiles in various engineering activities, these findings may have other unknown impacts. The significance of these findings needs to be further elucidated by more extensive studies with larger geotextile sample sizes to allow broader, generalized conclusions to be drawn.
科研通智能强力驱动
Strongly Powered by AbleSci AI