Advances in Two-Dimensional Ion-Selective Membranes: Bridging Nanoscale Insights to Industrial-Scale Salinity Gradient Energy Harvesting

纳米尺度 纳米技术 材料科学 离子 比例(比率) 桥接(联网) 盐度 环境科学 化学物理 化学 计算机科学 地质学 物理 海洋学 量子力学 生物化学 有机化学 计算机网络
作者
Xinyi Ma,M. Neek-Amal,Chengzhen Sun
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (20): 12610-12638 被引量:6
标识
DOI:10.1021/acsnano.3c11646
摘要

Salinity gradient energy, often referred to as the Gibbs free energy difference between saltwater and freshwater, is recognized as "blue energy" due to its inherent cleanliness, renewability, and continuous availability. Reverse electrodialysis (RED), relying on ion-selective membranes, stands as one of the most prevalent and promising methods for harnessing salinity gradient energy to generate electricity. Nevertheless, conventional RED membranes face challenges such as insufficient ion selectivity and transport rates and the difficulty of achieving the minimum commercial energy density threshold of 5 W/m2. In contrast, two-dimensional nanostructured materials, featuring nanoscale channels and abundant functional groups, offer a breakthrough by facilitating rapid ion transport and heightened selectivity. This comprehensive review delves into the mechanisms of osmotic power generation within a single nanopore and nanochannel, exploring optimal nanopore dimensions and nanochannel lengths. We subsequently examine the current landscape of power generation using two-dimensional nanostructured materials in laboratory-scale settings across various test areas. Furthermore, we address the notable decline in power density observed as test areas expand and propose essential criteria for the industrialization of two-dimensional ion-selective membranes. The review concludes with a forward-looking perspective, outlining future research directions, including scalable membrane fabrication, enhanced environmental adaptability, and integration into multiple industries. This review aims to bridge the gap between previous laboratory-scale investigations of two-dimensional ion-selective membranes in salinity gradient energy conversion and their potential large-scale industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助阔达的太阳采纳,获得10
1秒前
Xiao10105830完成签到,获得积分10
1秒前
半斤发布了新的文献求助10
1秒前
槐序完成签到,获得积分10
1秒前
1秒前
肖志勇完成签到,获得积分10
2秒前
2秒前
hhhh发布了新的文献求助10
2秒前
犹豫的代芙应助黄伊若采纳,获得10
2秒前
曾经豌豆发布了新的文献求助10
2秒前
2秒前
2秒前
SYLH应助科研通管家采纳,获得10
3秒前
大个应助happy采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
3秒前
李健应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
hottest完成签到,获得积分10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
刘巴旦完成签到,获得积分10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Xxanny应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
科研菜鸡完成签到 ,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558037
求助须知:如何正确求助?哪些是违规求助? 3133168
关于积分的说明 9400835
捐赠科研通 2833279
什么是DOI,文献DOI怎么找? 1557409
邀请新用户注册赠送积分活动 727233
科研通“疑难数据库(出版商)”最低求助积分说明 716244