Estimating soil moisture content in citrus orchards using multi-temporal sentinel-1A data-based LSTM and PSO-LSTM models

含水量 计算机科学 地质学 岩土工程
作者
Zongjun Wu,Ningbo Cui,Wenjiang Zhang,Chunwei Liu,Xiuliang Jin,Daozhi Gong,Liwen Xing,Lu Zhao,Shenglin Wen,Yenan Yang
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:637: 131336-131336 被引量:6
标识
DOI:10.1016/j.jhydrol.2024.131336
摘要

Soil moisture content is a vital variable in agricultural, hydrological, ecological and climatological processes. However, susceptible to soil type, soil structure, topography, vegetation and human activities, soil moisture content exhibits strong spatial heterogeneity in spatial distribution, which makes it difficult to accurately estimate the soil moisture content distribution information at a large scale using conventional methods. To solve the problem, this study proposed a novel hybrid model (PSO-LSTM) based on the particle swarm optimization (PSO) and long short-term memory (LSTM) network model to accurately predict soil moisture content at a large scale. Five different input combinations were constructed based on the vertical polarization (VV) and cross-polarization (VH) of multi-phase Sentinel-1A data, and the soil moisture content at depths of 5 cm, 10 cm, 20 cm and 40 cm in citrus orchards were estimated using the standalone LSTM and hybrid PSO-LSTM models. The results showed that the estimation accuracy of the hybrid PSO-LSTM model was greater than that of the standalone LSTM model at different depths, with the normalized root mean square error (NRMSE) of 4.568–11.023 % and 18.056–30.156 %, respectively. With the VV polarization as the only inputs, the PSO-LSTM model obtained high prediction accuracy, with the normalized root mean square error (NRMSE) of 5.458–10.125 %, respectively. Therefore, the PSO-LSTM model with VV polarization input was recommended to estimate the soil moisture content at different depths in citrus orchards, which provides important data for decision-making on distributed precision irrigation at a large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
迷路安阳发布了新的文献求助10
1秒前
1秒前
NexusExplorer应助Jolene66采纳,获得10
1秒前
医路有你完成签到,获得积分10
1秒前
2秒前
科研通AI5应助Sean采纳,获得10
2秒前
2秒前
超帅连虎完成签到,获得积分10
2秒前
皓月千里发布了新的文献求助10
2秒前
Grayball应助包容的剑采纳,获得10
2秒前
深情安青应助寒冷书竹采纳,获得10
3秒前
wbj0722完成签到,获得积分10
3秒前
JIAO完成签到,获得积分10
3秒前
3秒前
4秒前
852应助HopeStar采纳,获得10
4秒前
圆圆发布了新的文献求助30
5秒前
Orange应助Promise采纳,获得10
5秒前
一直发布了新的文献求助20
5秒前
5秒前
6秒前
乐乐应助JonyiCheng采纳,获得10
6秒前
无聊先知发布了新的文献求助10
6秒前
医路有你发布了新的文献求助10
7秒前
7秒前
7秒前
drizzling发布了新的文献求助10
8秒前
平淡南松完成签到,获得积分10
9秒前
研友_ED5GK完成签到,获得积分0
9秒前
舒适豌豆发布了新的文献求助10
9秒前
10秒前
生动的雨竹完成签到,获得积分10
10秒前
10秒前
啦啦啦完成签到,获得积分20
11秒前
silentJeremy完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678