Spectroscopic Investigations of Complex Electronic Interactions by Elemental Doping and Material Compositing of Cobalt Oxide for Enhanced Oxygen Evolution Reaction Activity

合成 材料科学 氧化钴 兴奋剂 复合氧化物 氧气 氧化物 化学工程 电子结构 纳米技术 无机化学 化学物理 物理化学 光电子学 冶金 计算化学 有机化学 计算机科学 人工智能 化学 工程类 物理 图像(数学)
作者
Jinzhen Huang,Adam H. Clark,Natasha Hales,Camelia N. Borca,Thomas Huthwelker,Radim Skoupý,Thomas J. Schmidt,Emiliana Fabbri
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (44) 被引量:12
标识
DOI:10.1002/adfm.202405384
摘要

Abstract Doping and compositing are two universal design strategies used to engineer the electronic state of a material and mitigate its disadvantages. These two strategies are extensively applied to design efficient electrocatalysts for water splitting. Using cobalt oxide (CoO) as a model catalyst, it is proven that the oxygen evolution reaction (OER) performance can be progressively improved, first by Fe‐doping to form Fe‐CoO solid solution, and further by the addition of CeO 2 to produce a Fe‐CoO/CeO 2 composite. X‐ray absorption spectroscopy (XAS) reveals that distinct electronic interactions are induced by the processes of doping and compositing. Fe‐doping of CoO can break down the structural symmetry, changing the electronic structure of both Co and O species at the surface and decreasing the flat‐band potential (V fb ). In comparison, subsequent compositing of Fe‐CoO with CeO 2 induces negligible electronic changes in the Fe‐CoO (as seen in ex situ characterizations), but significantly modifies the oxidative transformations of both Co and Fe under OER conditions. The spectroscopic investigations reveal that Fe‐doping and CeO 2 compositing play different roles in modifying the electronic properties of CoO in its pristine state and during OER catalysis, in return, providing useful guidance for the design of more efficient electrocatalysts using these two strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乔木木完成签到,获得积分10
刚刚
刚刚
小飞鼠发布了新的文献求助10
刚刚
唐飒发布了新的文献求助10
刚刚
痴痴的噜完成签到,获得积分10
1秒前
1秒前
rouxi发布了新的文献求助10
1秒前
能干冰露完成签到,获得积分10
1秒前
1秒前
猴哥完成签到,获得积分10
1秒前
2秒前
无私鹏涛完成签到,获得积分10
2秒前
Criminology34应助Tian采纳,获得10
2秒前
3秒前
唐文硕发布了新的文献求助10
3秒前
3秒前
fhz发布了新的文献求助20
3秒前
3秒前
isabelwy发布了新的文献求助10
3秒前
悦耳青曼发布了新的文献求助10
4秒前
小葛发布了新的文献求助10
4秒前
lameliu完成签到,获得积分10
4秒前
善学以致用应助Msong采纳,获得10
4秒前
19251758320完成签到 ,获得积分10
4秒前
开放夜南发布了新的文献求助10
4秒前
唐飒完成签到,获得积分10
5秒前
隐形曼青应助awoe采纳,获得10
5秒前
烂漫纲发布了新的文献求助10
5秒前
5秒前
5秒前
somous发布了新的文献求助10
5秒前
CipherSage应助王筠曦采纳,获得30
6秒前
6秒前
6秒前
Hello应助lkk采纳,获得10
6秒前
乂氼发布了新的文献求助10
7秒前
大模型应助Awei采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836