Information of Vertebral Bone and Muscle from Computed Tomography Imaging Improves the Prediction Power of Vertebral Fractures Using Deep-Learning Algorithm (Preprint)

预印本 计算机断层摄影术 断层摄影术 医学 深度学习 算法 计算机科学 人工智能 放射科 万维网
作者
Sung Hye Kong,Wonwoo Cho,Sung Bae Park,Jaegul Choo,Jung Hee Kim,Sang Wan Kim,Chan Soo Shin
出处
期刊:Journal of Medical Internet Research 卷期号:26: e48535-e48535
标识
DOI:10.2196/48535
摘要

Background With the progressive increase in aging populations, the use of opportunistic computed tomography (CT) scanning is increasing, which could be a valuable method for acquiring information on both muscles and bones of aging populations. Objective The aim of this study was to develop and externally validate opportunistic CT-based fracture prediction models by using images of vertebral bones and paravertebral muscles. Methods The models were developed based on a retrospective longitudinal cohort study of 1214 patients with abdominal CT images between 2010 and 2019. The models were externally validated in 495 patients. The primary outcome of this study was defined as the predictive accuracy for identifying vertebral fracture events within a 5-year follow-up. The image models were developed using an attention convolutional neural network–recurrent neural network model from images of the vertebral bone and paravertebral muscles. Results The mean ages of the patients in the development and validation sets were 73 years and 68 years, and 69.1% (839/1214) and 78.8% (390/495) of them were females, respectively. The areas under the receiver operator curve (AUROCs) for predicting vertebral fractures were superior in images of the vertebral bone and paravertebral muscles than those in the bone-only images in the external validation cohort (0.827, 95% CI 0.821-0.833 vs 0.815, 95% CI 0.806-0.824, respectively; P<.001). The AUROCs of these image models were higher than those of the fracture risk assessment models (0.810 for major osteoporotic risk, 0.780 for hip fracture risk). For the clinical model using age, sex, BMI, use of steroids, smoking, possible secondary osteoporosis, type 2 diabetes mellitus, HIV, hepatitis C, and renal failure, the AUROC value in the external validation cohort was 0.749 (95% CI 0.736-0.762), which was lower than that of the image model using vertebral bones and muscles (P<.001). Conclusions The model using the images of the vertebral bone and paravertebral muscle showed better performance than that using the images of the bone-only or clinical variables. Opportunistic CT screening may contribute to identifying patients with a high fracture risk in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sutharsons应助124332采纳,获得30
1秒前
shadow完成签到 ,获得积分10
2秒前
2秒前
迷失浪人完成签到,获得积分10
2秒前
受伤的冰海完成签到 ,获得积分10
2秒前
3秒前
zhhl2006发布了新的文献求助30
4秒前
5秒前
5秒前
桐桐应助Leila采纳,获得10
6秒前
道友请留步完成签到 ,获得积分10
7秒前
7秒前
8秒前
彭佳丽发布了新的文献求助10
8秒前
molinsky2006完成签到,获得积分10
9秒前
可爱的函函应助小王采纳,获得10
9秒前
lichard发布了新的文献求助10
10秒前
11秒前
新风发布了新的文献求助10
11秒前
轻松乐松完成签到,获得积分10
11秒前
桐桐应助温柔的中蓝采纳,获得10
12秒前
顺利一德发布了新的文献求助10
13秒前
沸腾的大海完成签到,获得积分10
13秒前
haitianluna发布了新的文献求助10
15秒前
宗语雪完成签到,获得积分10
15秒前
Orange应助youchao采纳,获得10
16秒前
najibveto发布了新的文献求助10
16秒前
慕青应助彭佳丽采纳,获得10
17秒前
坤坤完成签到,获得积分20
17秒前
19秒前
zlg完成签到 ,获得积分10
21秒前
22秒前
子车茗应助124332采纳,获得30
22秒前
Kyone完成签到,获得积分10
22秒前
新风完成签到,获得积分10
22秒前
23秒前
bill完成签到,获得积分10
23秒前
24秒前
顺利一德完成签到,获得积分10
24秒前
25秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308531
求助须知:如何正确求助?哪些是违规求助? 2941839
关于积分的说明 8506196
捐赠科研通 2616831
什么是DOI,文献DOI怎么找? 1429824
科研通“疑难数据库(出版商)”最低求助积分说明 663928
邀请新用户注册赠送积分活动 649040