CEEMDAN fuzzy entropy based fatigue driving detection using single-channel EEG

脑电图 计算机科学 熵(时间箭头) 模糊逻辑 人工智能 语音识别 模式识别(心理学) 心理学 物理 神经科学 量子力学
作者
Yunhe Liu,Zirui Xiang,Zhi-xin Yan,Jianxiu Jin,Lin Shu,Lulu Zhang,Xiangmin Xu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:95: 106460-106460
标识
DOI:10.1016/j.bspc.2024.106460
摘要

Fatigue-induced driving remains a prominent contributing factor to frequent traffic accidents. Extensive research has demonstrated the efficacy of utilizing Electroencephalogram (EEG) for accurate fatigue detection. However, the laborious and cost-intensive process of EEG labeling, compounded by the issue of label reliability, poses a substantial challenge. Most of the current studies are based on multi-channel EEG signals, which are not conducive to the application of intelligent vehicle systems because they require abundant complex wiring. Based on the EEG signals of the left forehead, this paper proposes a self-training semi-supervised method to transform unlabeled data into pseudo-labeled data and combines the fuzzy entropy feature after scale-transformation of the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to establish a driving fatigue recognition model. In this work, three kinds of features of EEG in the time domain, frequency domain, and entropy were extracted to train the semi-supervised model of self-training. Unlabeled data is predicted using this model, and high-confidence pseudo-labeled data is amalgamated with the labeled data. The multi-scale fuzzy entropy algorithm based on CEEMDAN was used to establish the classification model. The results show that the CEEMDAN fuzzy entropy method can improve the recognition accuracy by about 8 %, and the use of pseudo-labeled data with high confidence obtained by single self-training for model training can improve the recognition accuracy. Compared with other recognition methods based on single-channel forehead EEG, this method has higher accuracy. Meanwhile, our methodology's effectiveness has been further validated through testing on publicly accessible datasets, underscoring its robustness and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
王十二完成签到 ,获得积分10
1秒前
程程发布了新的文献求助10
2秒前
mushroomdoor发布了新的文献求助10
2秒前
SYLH应助LZH采纳,获得20
3秒前
罗wq发布了新的文献求助10
3秒前
jiangmingjiao完成签到,获得积分10
4秒前
yookia应助科研通管家采纳,获得10
4秒前
无私的芹应助科研通管家采纳,获得10
4秒前
4秒前
白桃枝完成签到,获得积分10
4秒前
无情向薇应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
无私的芹应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
zhixiang应助科研通管家采纳,获得10
5秒前
cr7发布了新的文献求助10
5秒前
无私的芹应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
无私的芹应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
柯一一应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
6秒前
思源应助科研通管家采纳,获得10
6秒前
汉堡包应助jerry采纳,获得10
6秒前
千跃应助科研通管家采纳,获得20
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
无私的芹应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916