CEEMDAN fuzzy entropy based fatigue driving detection using single-channel EEG

脑电图 计算机科学 熵(时间箭头) 模糊逻辑 人工智能 语音识别 模式识别(心理学) 心理学 物理 神经科学 量子力学
作者
Yunhe Liu,Zirui Xiang,Zhi-xin Yan,Jianxiu Jin,Lin Shu,Lulu Zhang,Xiangmin Xu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:95: 106460-106460
标识
DOI:10.1016/j.bspc.2024.106460
摘要

Fatigue-induced driving remains a prominent contributing factor to frequent traffic accidents. Extensive research has demonstrated the efficacy of utilizing Electroencephalogram (EEG) for accurate fatigue detection. However, the laborious and cost-intensive process of EEG labeling, compounded by the issue of label reliability, poses a substantial challenge. Most of the current studies are based on multi-channel EEG signals, which are not conducive to the application of intelligent vehicle systems because they require abundant complex wiring. Based on the EEG signals of the left forehead, this paper proposes a self-training semi-supervised method to transform unlabeled data into pseudo-labeled data and combines the fuzzy entropy feature after scale-transformation of the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) to establish a driving fatigue recognition model. In this work, three kinds of features of EEG in the time domain, frequency domain, and entropy were extracted to train the semi-supervised model of self-training. Unlabeled data is predicted using this model, and high-confidence pseudo-labeled data is amalgamated with the labeled data. The multi-scale fuzzy entropy algorithm based on CEEMDAN was used to establish the classification model. The results show that the CEEMDAN fuzzy entropy method can improve the recognition accuracy by about 8 %, and the use of pseudo-labeled data with high confidence obtained by single self-training for model training can improve the recognition accuracy. Compared with other recognition methods based on single-channel forehead EEG, this method has higher accuracy. Meanwhile, our methodology's effectiveness has been further validated through testing on publicly accessible datasets, underscoring its robustness and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ohh完成签到 ,获得积分10
刚刚
不配.应助dan1029采纳,获得20
1秒前
大会开始看完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
景尘发布了新的文献求助100
3秒前
脆脆薯条完成签到,获得积分10
4秒前
Peri发布了新的文献求助150
6秒前
Akim应助木光采纳,获得10
6秒前
7秒前
欣喜惜筠发布了新的文献求助10
8秒前
李爱国应助吃手手采纳,获得10
9秒前
9秒前
9秒前
10秒前
流川枫发布了新的文献求助10
11秒前
11秒前
冷酷如天完成签到,获得积分10
12秒前
共享精神应助青青在努力采纳,获得10
12秒前
orguiel应助555采纳,获得10
13秒前
华仔应助眼睛大稀采纳,获得10
13秒前
14秒前
14秒前
Jasper应助Nuyoah采纳,获得10
15秒前
景尘完成签到,获得积分10
15秒前
RUIT发布了新的文献求助10
15秒前
hdx完成签到 ,获得积分10
16秒前
踏实的映易完成签到,获得积分10
16秒前
伯赏道天完成签到,获得积分20
17秒前
成诗怡完成签到,获得积分10
17秒前
17秒前
彭于彦祖应助欣喜惜筠采纳,获得30
19秒前
四夕完成签到 ,获得积分10
20秒前
彭认真完成签到,获得积分10
20秒前
21秒前
FashionBoy应助慈祥的翠桃采纳,获得10
21秒前
maox1aoxin应助慈祥的翠桃采纳,获得50
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239388
求助须知:如何正确求助?哪些是违规求助? 2884684
关于积分的说明 8234946
捐赠科研通 2552905
什么是DOI,文献DOI怎么找? 1381036
科研通“疑难数据库(出版商)”最低求助积分说明 649172
邀请新用户注册赠送积分活动 624849