生物炭
热液循环
光催化
异质结
材料科学
微波食品加热
桥(图论)
化学工程
光电子学
纳米技术
化学
计算机科学
催化作用
热解
工程类
电信
医学
生物化学
内科学
作者
Weimeng Chi,Fei Yu,Guohua Dong,Liming Bai,Dongxuan Guo,Dong‐Feng Chai,Ming Zhao,Jinlong Li,Wenzhi Zhang
标识
DOI:10.1016/j.jece.2024.113201
摘要
In this work, a hierarchical Ag3VO4/ZnO/BC composite (abbreviated as AZB) is firstly prepared via a microwave-assisted solvothermal strategy and used as photocatalyst to degrade levofloxacin (LFX) under visible-light irradiation. After optimizing the mass ratio of components and the photoreaction operation parameters, the optimal 0.2Ag3VO4/ZnO/0.1BC (denoted as A0.2ZB0.1) endows the superior photocatalytic removal rate toward LFX (10 mg/L) up to 91.2% at 120 min, revealing approximately 10 times enhancement than that of ZnO (9.4%). Meanwhile, the A0.2ZB0.1 displays desirable reusability and stability after cycling 5 cycles and the •O2- and h+ are the dominating reactive species during photocatalysis process. The improved photocatalytic performance can be primarily attributed to successful establishment of a heterojunction with n-n scheme between ZnO and Ag3VO4. This leads to enhanced responsive capability to visible light and increased separation and transmission efficiency of the photogenerated electron/hole (e-/h+) pairs. Furthermore, the biochar (BC) with excellent conductivity can act as a charge-transfer bridge for further accelerating the charges transfer in composite. In addition, the analysis of intermediates identified through liquid chromatography-mass spectrometry (LC-MS) allowed for a reasonable inference for the potential mechanism and pathway involved in photodegradation. Overall, our study demonstrates an innovative strategy to enhance the photocatalytic activity of ZnO through the simultaneous incorporation of BC and the creation of a heterojunction composite.
科研通智能强力驱动
Strongly Powered by AbleSci AI