BAVS: Bootstrapping Audio-Visual Segmentation by Integrating Foundation Knowledge

计算机科学 自举(财务) 视听 基础(证据) 分割 图像分割 人工智能 自然语言处理 多媒体 财务 考古 经济 历史
作者
Chen Liu,Peike Li,Hu Zhang,Lincheng Li,Zi Huang,Dadong Wang,Xin Yu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:5
标识
DOI:10.1109/tmm.2024.3405622
摘要

Given an audio-visual pair, audio-visual segmentation (AVS) aims to locate sounding sources by predicting pixel-wise maps. Previous methods assume that each sound component in an audio signal always has a visual counterpart in the image. However, this assumption overlooks that off-screen sounds and background noise often contaminate the audio recordings in real-world scenarios. They impose significant challenges on building a consistent semantic mapping between audio and visual signals for AVS models and thus impede precise sound localization. In this work, we propose a two-stage bootstrapping audio-visual segmentation framework by incorporating multi-modal foundation knowledge $^{1}$ In a nutshell, our BAVS is designed to eliminate the interference of background noise or off-screen sounds in segmentation by establishing the audio-visual correspondences in an explicit manner. In the first stage, we employ a segmentation model to localize potential sounding objects from visual data without being affected by contaminated audio signals. Meanwhile, we also utilize a foundation audio classification model to discern audio semantics. Considering the audio tags provided by the audio foundation model are noisy, associating object masks with audio tags is not trivial. Thus, in the second stage, we develop an audio-visual semantic integration strategy (AVIS) to localize the authentic-sounding objects. Here, we construct an audio-visual tree based on the hierarchical correspondence between sounds and object categories. We then examine the label concurrency between the localized objects and classified audio tags by tracing the audio-visual tree. With AVIS, we can effectively segment real-sounding objects. Extensive experiments demonstrate the superiority of our method on AVS datasets, particularly in scenarios involving background noise. Our project website is https://yenanliu.github.io/AVSS.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll发布了新的文献求助10
1秒前
Yx完成签到,获得积分10
1秒前
赵子轩发布了新的文献求助10
1秒前
VVV发布了新的文献求助10
1秒前
3秒前
4秒前
zw完成签到,获得积分20
4秒前
狸小狐完成签到,获得积分10
4秒前
兴奋大船完成签到,获得积分10
6秒前
斯文败类应助Giirunnermoo采纳,获得10
7秒前
崔小好完成签到,获得积分10
8秒前
VVV完成签到,获得积分10
8秒前
lll完成签到,获得积分10
8秒前
angel发布了新的文献求助10
9秒前
丘比特应助nenoaowu采纳,获得50
9秒前
彭于晏应助舒心的黎云采纳,获得10
9秒前
笨笨的怜南完成签到,获得积分10
9秒前
zou发布了新的文献求助10
10秒前
Yzh完成签到,获得积分10
10秒前
yesiDo完成签到,获得积分10
10秒前
Lucas应助赵子轩采纳,获得10
11秒前
文艺的筮完成签到 ,获得积分10
12秒前
12秒前
zw发布了新的文献求助10
12秒前
有魅力哈密瓜完成签到,获得积分10
13秒前
Orange应助卡夫卡的熊采纳,获得10
13秒前
香蕉觅云应助陶醉觅夏采纳,获得10
14秒前
赘婿应助linlin采纳,获得10
14秒前
17秒前
18秒前
脑洞疼应助克利夫兰采纳,获得10
19秒前
22秒前
冷静的胜完成签到,获得积分10
23秒前
23秒前
23秒前
YUYU不摸鱼发布了新的文献求助20
24秒前
bigbirdi完成签到,获得积分10
24秒前
舒心的黎云完成签到,获得积分10
25秒前
26秒前
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012