BAVS: Bootstrapping Audio-Visual Segmentation by Integrating Foundation Knowledge

计算机科学 自举(财务) 视听 基础(证据) 分割 图像分割 人工智能 自然语言处理 多媒体 财务 历史 经济 考古
作者
Chen Liu,Peike Li,Hu Zhang,Lincheng Li,Zi Huang,Dadong Wang,Xin Yu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:5
标识
DOI:10.1109/tmm.2024.3405622
摘要

Given an audio-visual pair, audio-visual segmentation (AVS) aims to locate sounding sources by predicting pixel-wise maps. Previous methods assume that each sound component in an audio signal always has a visual counterpart in the image. However, this assumption overlooks that off-screen sounds and background noise often contaminate the audio recordings in real-world scenarios. They impose significant challenges on building a consistent semantic mapping between audio and visual signals for AVS models and thus impede precise sound localization. In this work, we propose a two-stage bootstrapping audio-visual segmentation framework by incorporating multi-modal foundation knowledge $^{1}$ In a nutshell, our BAVS is designed to eliminate the interference of background noise or off-screen sounds in segmentation by establishing the audio-visual correspondences in an explicit manner. In the first stage, we employ a segmentation model to localize potential sounding objects from visual data without being affected by contaminated audio signals. Meanwhile, we also utilize a foundation audio classification model to discern audio semantics. Considering the audio tags provided by the audio foundation model are noisy, associating object masks with audio tags is not trivial. Thus, in the second stage, we develop an audio-visual semantic integration strategy (AVIS) to localize the authentic-sounding objects. Here, we construct an audio-visual tree based on the hierarchical correspondence between sounds and object categories. We then examine the label concurrency between the localized objects and classified audio tags by tracing the audio-visual tree. With AVIS, we can effectively segment real-sounding objects. Extensive experiments demonstrate the superiority of our method on AVS datasets, particularly in scenarios involving background noise. Our project website is https://yenanliu.github.io/AVSS.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
summer完成签到 ,获得积分10
1秒前
1秒前
一鸣大人完成签到,获得积分10
1秒前
1秒前
2秒前
lxy发布了新的文献求助10
2秒前
玉玉完成签到,获得积分10
2秒前
3秒前
轻松白开水完成签到 ,获得积分10
4秒前
清新的翠发布了新的文献求助30
5秒前
6秒前
6秒前
1111发布了新的文献求助10
6秒前
一株多肉完成签到 ,获得积分10
6秒前
lancerimpp完成签到,获得积分10
7秒前
7秒前
wangsai0532完成签到,获得积分10
7秒前
陈明娃完成签到,获得积分10
7秒前
7秒前
天天完成签到 ,获得积分10
8秒前
huangqx完成签到 ,获得积分20
8秒前
zqingqing完成签到,获得积分10
8秒前
9秒前
彭于晏应助tt采纳,获得10
9秒前
9秒前
务实鞅完成签到 ,获得积分10
9秒前
10秒前
星星会开花完成签到,获得积分10
10秒前
刺槐完成签到,获得积分10
10秒前
dropofwater完成签到,获得积分10
11秒前
13完成签到,获得积分10
11秒前
Birdy发布了新的文献求助10
11秒前
学不懂数学应助fussguai采纳,获得10
11秒前
11秒前
我是站长才怪应助TTT采纳,获得10
12秒前
鸭嘴兽发布了新的文献求助10
13秒前
羊羊发布了新的文献求助10
13秒前
xinluli完成签到,获得积分10
13秒前
13秒前
玄笺发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259