Cultivated land segmentation in RGB remote sensing images: non-uniform regularization with kernel space and graph cut

RGB颜色模型 人工智能 切割 分割 模式识别(心理学) 图像分割 计算机科学 尺度空间分割 均值漂移 数学 像素 计算机视觉
作者
Wangsheng Wu
标识
DOI:10.1117/12.3033562
摘要

To improve the application efficiency of RGB remote sensing images in agricultural land resource surveys, a cultivated land segmentation algorithm based on kernel space non-uniform regularization classification and improved graph cut was proposed. Firstly, extracting texture and color features of remote sensing images using Local Binary Pattern algorithm (LBP), Gabor filters, and RGB, HSV color space, respectively. Next, introducing a kernel method to map data from lowdimension to high-dimension, and construct a kernel space-based non-uniform regularization sparse representation model to classify and segment images in pixel level. Finally, an innovative graph cut algorithm is enhanced by incorporating a Gaussian distribution to redefine the penalty term for homogeneous regions and introducing a new color gradient measure to define the penalty term for boundaries. This approach effectively removes scatter and restricts the segmentation boundary. The average classification accuracy and average F1 score of the classifier proposed in this paper are about 2% and 3% higher than those of recent regularized subspace classifiers, respectively. Compared with the Graph cut algorithm, the proposed improved graph cut algorithm has an average mIoU improvement of about 9%. The average accuracy of the whole segmentation algorithm is 95.43%, and the average mIoU is 88.56%. Compared with the comparison algorithm, the proposed algorithm has higher segmentation accuracy, which proves that the proposed algorithm can adapt to the cultivated land segmentation scene of remote sensing images and is effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
钟是一梦完成签到,获得积分10
1秒前
1秒前
wanci应助Ll采纳,获得10
1秒前
2秒前
2秒前
孟柠柠发布了新的文献求助10
2秒前
青阳完成签到,获得积分10
3秒前
科研狗发布了新的文献求助20
4秒前
5秒前
5秒前
jarenthar完成签到 ,获得积分10
5秒前
5秒前
丘比特应助hata采纳,获得10
5秒前
顾矜应助lszhw采纳,获得10
6秒前
lqq完成签到 ,获得积分10
6秒前
6秒前
共享精神应助拟拟采纳,获得10
6秒前
6秒前
lhy12345完成签到,获得积分10
6秒前
非常可爱发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
科研民工发布了新的文献求助10
8秒前
文艺的初蓝完成签到 ,获得积分10
8秒前
TiAmo发布了新的文献求助10
8秒前
刘十三完成签到,获得积分10
8秒前
8秒前
犹豫忆南完成签到,获得积分10
9秒前
科研通AI5应助kingwhitewing采纳,获得10
10秒前
10秒前
mm关注了科研通微信公众号
10秒前
xieyuanxing发布了新的文献求助10
10秒前
10秒前
左然然完成签到,获得积分10
10秒前
10秒前
人福药业完成签到,获得积分10
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740