Untangling the cumulative impact of big data analytics, green lean six sigma and sustainable supply chain management on the economic performance of manufacturing organisations

六西格玛 大数据 精益制造 供应链 精益六西格玛 供应链管理 分析 业务 制造工程 过程管理 运营管理 工程类 计算机科学 数据科学 营销 数据挖掘
作者
Arsalan Fayyaz,ChenGuang Liu,Yan Xu,Fahad Khan,Selim Ahmed
出处
期刊:Production Planning & Control [Informa]
卷期号:: 1-18 被引量:1
标识
DOI:10.1080/09537287.2024.2348517
摘要

Big data analytics provides up-to-date information to facilitate organisational decision-making and boost economic performance. However, an organisation's big data analytical capability must be investigated to determine its importance in driving economic performance through continuous improvement and sustainability-related tools such as green lean six sigma and sustainable supply chain management. We conducted an empirical study and obtained 443 effective responses from managerial staff working in small and medium-sized organisations in Pakistan. Using structural equation modelling and artificial neural networks, we investigate the effects of big data analytics, green lean six sigma and sustainable supply chain management on economic performance. Our result shows that green lean six sigma and sustainable supply chain management partially mediate the relationship between big data analytics and economic performance. Although the implementation of sustainable supply chain management is identified, it is supported by technological but not cultural compatibility in the current operating environments of the organisations. As a theoretical contribution, this study enriches the literature on digitisation by relating it to the dynamic capability theory. As per practical contribution, this study reveals that the amalgamation of big data analytics, green lean six sigma, and sustainable supply chain management strengthen the organisation's economic performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kobiy完成签到 ,获得积分10
刚刚
wu完成签到 ,获得积分10
1秒前
蛋泥完成签到,获得积分10
1秒前
顾矜应助mingjie采纳,获得10
2秒前
zhaowenxian发布了新的文献求助10
2秒前
勤劳傲晴发布了新的文献求助10
3秒前
3秒前
橘子完成签到,获得积分10
5秒前
可耐的从安完成签到 ,获得积分10
6秒前
zho应助背后的诺言采纳,获得10
6秒前
粥粥完成签到,获得积分10
6秒前
7秒前
打打应助陈杰采纳,获得10
8秒前
充电宝应助柔弱凡松采纳,获得10
9秒前
Jasmine发布了新的文献求助10
10秒前
11秒前
11秒前
大气的秋完成签到,获得积分10
12秒前
桐桐应助BB采纳,获得10
12秒前
12秒前
12秒前
曙光完成签到,获得积分10
13秒前
13秒前
大方嵩发布了新的文献求助10
14秒前
陌路发布了新的文献求助20
14秒前
Muqi完成签到,获得积分10
14秒前
15秒前
marinemiao发布了新的文献求助10
16秒前
16秒前
丘比特应助wzxxxx采纳,获得10
17秒前
科研通AI5应助飘逸蘑菇采纳,获得10
17秒前
科研通AI2S应助cc采纳,获得10
18秒前
18秒前
18秒前
spray完成签到,获得积分10
19秒前
范范完成签到,获得积分20
19秒前
少年发布了新的文献求助10
19秒前
大力鱼发布了新的文献求助10
19秒前
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794