Factors affecting the intention to wear helmets for e-bike riders: the case of Chinese college students

人气 计划行为理论 人为因素与人体工程学 心理学 伤害预防 执行 执法 应用心理学 毒物控制 人口 自杀预防 职业安全与健康 心理干预 社会心理学 环境卫生 医学 控制(管理) 政治学 病理 管理 精神科 法学 经济
作者
Ying Yang,Chun Li,Kun Cheng,Sangen Hu
出处
期刊:International Journal of Injury Control and Safety Promotion [Informa]
卷期号:: 1-12 被引量:1
标识
DOI:10.1080/17457300.2024.2349553
摘要

As the popularity of electric bicycles (e-bikes) continues to surge, the number of accidents involving them has commensurately increased. A significant factor contributing to the high fatality rate in these accidents is the low usage of helmets among e-bike riders. Helmets have been proven to reduce the severity of injuries, yet their usage remains unexpectedly low. This issue is particularly pronounced among college students, the primary buyer group for e-bikes. Regrettably, there is a lack of research exploring their intentions to wear helmets. Understanding determinants of their intentions to wear helmets is crucial in promoting safe e-bike travel. Therefore, the present study aims to develop an integrated theoretical model that combines the Theory of Planned Behavior (TPB) and the Health Belief Model (HBM) to examine the factors influencing e-bike riders' helmet-wearing intentions among college students. Additionally, two variables—descriptive norms and law enforcement—are incorporated. The results indicate that the integrated model accounts for 76% of the variance in helmet-wearing intention, surpassing single-theory models. Specifically, the TPB accounts for 65%, while the HBM explains 53%. Notably, law enforcement emerges as the most influential factor, highlighting the crucial role of enforcing regulations and promoting awareness. Other significant factors include subjective and descriptive norms, attitudes, perceived benefits, perceived susceptibility, perceived barriers, and perceived severity. These findings provide valuable insights for policy development and targeted interventions aimed at improving helmet wear rates among e-bike riders, especially among the college student population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fanmo完成签到 ,获得积分10
刚刚
2秒前
葡萄成熟时完成签到,获得积分10
2秒前
顾矜应助ccc采纳,获得10
3秒前
圆圆发布了新的文献求助10
4秒前
xjcy应助leilg采纳,获得10
5秒前
爆米花应助快乐寄风采纳,获得10
6秒前
不配.应助Rita采纳,获得10
7秒前
故城发布了新的文献求助10
7秒前
bear发布了新的文献求助10
8秒前
lsl完成签到,获得积分10
8秒前
10秒前
燕知南发布了新的文献求助10
10秒前
12秒前
1531811完成签到,获得积分10
12秒前
认真依琴发布了新的文献求助10
14秒前
14秒前
cyh给cyh的求助进行了留言
17秒前
重要手机完成签到 ,获得积分10
18秒前
快乐寄风发布了新的文献求助10
19秒前
20秒前
infish完成签到,获得积分10
22秒前
Diplogen完成签到,获得积分10
22秒前
zzYu完成签到,获得积分10
25秒前
26秒前
英俊小蘑菇完成签到,获得积分10
27秒前
29秒前
可爱的电话完成签到,获得积分10
30秒前
31秒前
31秒前
31秒前
陆雪发布了新的文献求助10
32秒前
满穗发布了新的文献求助20
33秒前
34秒前
小闪发布了新的文献求助30
35秒前
学习的苹果完成签到,获得积分20
36秒前
独特靖巧发布了新的文献求助10
36秒前
研友_VZG7GZ应助超级小熊猫采纳,获得10
37秒前
38秒前
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136101
求助须知:如何正确求助?哪些是违规求助? 2787001
关于积分的说明 7780169
捐赠科研通 2443122
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870