Fine-Grained Object Detection in Remote Sensing Images via Adaptive Label Assignment and Refined-Balanced Feature Pyramid Network

计算机科学 棱锥(几何) 目标检测 人工智能 特征(语言学) 计算机视觉 骨干网 对象(语法) 交叉口(航空) 相似性(几何) 特征提取 探测器 方向(向量空间) 模式识别(心理学) 图像(数学) 数学 几何学 工程类 哲学 电信 航空航天工程 语言学 计算机网络
作者
Junjie Song,Lingjuan Miao,Qi Ming,Zhiqiang Zhou,Yunpeng Dong
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:16: 71-82 被引量:14
标识
DOI:10.1109/jstars.2022.3224558
摘要

Object detection in high-resolution remote sensing images remains a challenging task due to the uniqueness of its viewing perspective, complex background, arbitrary orientation, etc. For fine-grained object detection in high-resolution remote sensing images, the high intra-class similarity is even more severe, which makes it difficult for the object detector to recognize the correct classes. In this article, we propose the refined and balanced feature pyramid network (RB-FPN) and center-scale aware (CSA) label assignment strategy to address the problems of fine-grained object detection in remote sensing images. RB-FPN fuses features from different layers and suppresses background information when focusing on regions that may contain objects, providing high-quality semantic information for fine-grained object detection. Intersection over Union (IoU) is usually applied to select the positive candidate samples for training. However, IoU is sensitive to the angle variation of oriented objects with large aspect ratios, and a fixed IoU threshold will cause the narrow oriented objects without enough positive samples to participate in the training. In order to solve the problem, we propose the CSA label assignment strategy that adaptively adjusts the IoU threshold according to statistical characteristics of oriented objects. Experiments on FAIR1M dataset demonstrate that the proposed approach is superior. Moreover, the proposed method was applied to the fine-grained object detection in high-resolution optical images of 2021 Gaofen challenge. Our team ranked sixth and was awarded as the winning team in the final.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
蓦回发布了新的文献求助10
1秒前
jinxli留下了新的社区评论
1秒前
ZZZZZZZZF完成签到,获得积分10
2秒前
Heisenberg完成签到,获得积分10
2秒前
2秒前
2秒前
文静野狼应助内向的冰棍采纳,获得10
3秒前
白踏歌发布了新的文献求助10
4秒前
Yuna96发布了新的文献求助10
4秒前
理来服发布了新的文献求助10
5秒前
leaves完成签到,获得积分10
5秒前
ruyinni发布了新的文献求助30
6秒前
Tanzey完成签到,获得积分10
6秒前
Ll完成签到,获得积分10
7秒前
7秒前
谨慎盼山完成签到,获得积分10
7秒前
7秒前
汉堡包应助天熙采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
橙子发布了新的文献求助10
11秒前
AFF发布了新的文献求助10
11秒前
烟花应助yellow采纳,获得10
12秒前
13秒前
深情安青应助无尽的派采纳,获得10
14秒前
笨笨完成签到,获得积分10
14秒前
15秒前
15秒前
Owen应助byb采纳,获得10
16秒前
16秒前
杨小花发布了新的文献求助10
17秒前
CodeCraft应助九千七采纳,获得10
17秒前
赘婿应助彭a采纳,获得10
18秒前
科目三应助Ll采纳,获得10
19秒前
19秒前
英姑应助植保匠人采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312684
求助须知:如何正确求助?哪些是违规求助? 2945170
关于积分的说明 8523532
捐赠科研通 2620981
什么是DOI,文献DOI怎么找? 1433226
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650255