Bayesian maximum entropy method for stochastic model updating using measurement data and statistical information

最大熵原理 计算机科学 联合熵 贝叶斯概率 Kullback-Leibler散度 熵(时间箭头) 信息论 数据挖掘 统计模型 概率逻辑 算法 数学 机器学习 人工智能 统计 量子力学 物理
作者
Chenxing Wang,Lechang Yang,Min Xie,Marcos A. Valdebenito,Michael Beer
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:188: 110012-110012 被引量:6
标识
DOI:10.1016/j.ymssp.2022.110012
摘要

The presence of summarized statistical information, such as some statistics of the system response, is not rare in practical engineering as the acquisition of precisely measured point data is expensive and may not be always accessible. In this paper, we integrate the Bayesian framework with the maximum entropy theory and develop a Bayesian Maximum Entropy (BME) approach for model updating in a scenario where measurement data and statistical information are simultaneously available. Within the scope of this contribution, it is assumed that measurement data denote direct observations, e.g. point data, representing system response measurements while statistical information involves summarized information, e.g. moment and/or reliability information, of the system response. The basic principle of our approach is to convert point data and various statistical information into constraints under the BME framework and use the method of Lagrange multipliers to find the optimal posterior distributions. We then extend this approach to imprecise probabilistic models which have not been addressed so far. The approximate Bayesian computation is employed to facilitate the estimation of cumbersome likelihood functions which results from the involvement of entropy terms accounting for statistical information. Furthermore, a Wasserstein distance-based metric is proposed and embedded into the framework to capture the divergence information in an effective and efficient way. The effectiveness of the proposed approach is verified by a numerical case of simply supported beam and an engineering problem of fatigue crack growth. It shows some promising aspects of this research as better calibration results are produced with less uncertainty, and hence potential of our approach for engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
大胆新晴完成签到,获得积分10
1秒前
灵巧汉堡完成签到 ,获得积分10
3秒前
3秒前
282387287完成签到,获得积分10
3秒前
3秒前
叶95完成签到 ,获得积分10
4秒前
DoctorHao发布了新的文献求助10
6秒前
无花果应助wade2016采纳,获得10
7秒前
粥游天下发布了新的文献求助10
7秒前
烟花应助碧蓝的老鼠采纳,获得10
7秒前
湛刘佳发布了新的文献求助10
8秒前
8秒前
小蘑菇应助刻苦的煎蛋采纳,获得10
9秒前
大个应助狂奔的酸笋采纳,获得10
9秒前
东方应助xiaojian_291采纳,获得50
10秒前
科研通AI5应助unique采纳,获得10
11秒前
11秒前
DoctorHao完成签到,获得积分10
12秒前
12秒前
hakunamatata完成签到,获得积分10
12秒前
kk发布了新的文献求助10
14秒前
15秒前
kai_完成签到,获得积分10
16秒前
18秒前
18秒前
艾登登发布了新的文献求助10
18秒前
Lighten完成签到 ,获得积分10
19秒前
kk完成签到,获得积分10
23秒前
高兴的海亦完成签到,获得积分10
24秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
25秒前
unique发布了新的文献求助10
27秒前
严冰蝶完成签到 ,获得积分10
27秒前
31秒前
小孙失策了完成签到,获得积分10
31秒前
31秒前
Meng完成签到,获得积分10
33秒前
思源应助12采纳,获得10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783