Bayesian maximum entropy method for stochastic model updating using measurement data and statistical information

最大熵原理 计算机科学 联合熵 贝叶斯概率 Kullback-Leibler散度 熵(时间箭头) 信息论 数据挖掘 统计模型 概率逻辑 算法 数学 机器学习 人工智能 统计 量子力学 物理
作者
Chenxing Wang,Lechang Yang,Min Xie,Marcos A. Valdebenito,Michael Beer
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:188: 110012-110012 被引量:6
标识
DOI:10.1016/j.ymssp.2022.110012
摘要

The presence of summarized statistical information, such as some statistics of the system response, is not rare in practical engineering as the acquisition of precisely measured point data is expensive and may not be always accessible. In this paper, we integrate the Bayesian framework with the maximum entropy theory and develop a Bayesian Maximum Entropy (BME) approach for model updating in a scenario where measurement data and statistical information are simultaneously available. Within the scope of this contribution, it is assumed that measurement data denote direct observations, e.g. point data, representing system response measurements while statistical information involves summarized information, e.g. moment and/or reliability information, of the system response. The basic principle of our approach is to convert point data and various statistical information into constraints under the BME framework and use the method of Lagrange multipliers to find the optimal posterior distributions. We then extend this approach to imprecise probabilistic models which have not been addressed so far. The approximate Bayesian computation is employed to facilitate the estimation of cumbersome likelihood functions which results from the involvement of entropy terms accounting for statistical information. Furthermore, a Wasserstein distance-based metric is proposed and embedded into the framework to capture the divergence information in an effective and efficient way. The effectiveness of the proposed approach is verified by a numerical case of simply supported beam and an engineering problem of fatigue crack growth. It shows some promising aspects of this research as better calibration results are produced with less uncertainty, and hence potential of our approach for engineering applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
逸龙完成签到,获得积分10
刚刚
buno应助单纯的雅香采纳,获得10
1秒前
xinchengzhu发布了新的文献求助10
2秒前
派大星发布了新的文献求助10
2秒前
科研通AI5应助黄紫红蓝采纳,获得10
3秒前
3秒前
3秒前
fff发布了新的文献求助10
3秒前
3秒前
4秒前
科研人发布了新的文献求助10
4秒前
4秒前
徐慕源发布了新的文献求助10
4秒前
wenwen完成签到,获得积分10
4秒前
XZZH完成签到,获得积分10
5秒前
清浅发布了新的文献求助10
5秒前
车到山前必有路女士完成签到,获得积分10
5秒前
JamesPei应助Ripples采纳,获得10
5秒前
5秒前
我是老大应助乐园采纳,获得10
6秒前
7秒前
个木发布了新的文献求助10
7秒前
谨慎不二发布了新的文献求助10
7秒前
CodeCraft应助lishunzcqty采纳,获得10
8秒前
青丝落花完成签到,获得积分10
8秒前
化学小学生完成签到,获得积分10
8秒前
9秒前
完美世界应助高高迎蓉采纳,获得10
9秒前
已拿捏催化剂完成签到 ,获得积分10
9秒前
WJM发布了新的文献求助10
9秒前
左丘忻完成签到,获得积分10
9秒前
10秒前
端庄的萝发布了新的文献求助20
10秒前
孟严青完成签到,获得积分10
10秒前
livra1058完成签到,获得积分10
10秒前
wonderting完成签到,获得积分10
10秒前
无敌小汐完成签到,获得积分10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678