Application of novel hybrid machine learning systems and radiomics features for non-motor outcome prediction in Parkinson’s disease

蒙特利尔认知评估 人工智能 机器学习 特征选择 计算机科学 痴呆 桥接(联网) 多元统计 人口 疾病 医学诊断 医学 内科学 病理 计算机网络 环境卫生
作者
Mohammad R. Salmanpour,Mahya Bakhtiyari,Mahdi Hosseinzadeh,Mehdi Maghsudi,Fereshteh Yousefirizi,Mohammad Mehdi Ghaemi,Arman Rahmim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (3): 035004-035004 被引量:4
标识
DOI:10.1088/1361-6560/acaba6
摘要

Abstract Objectives. Parkinson’s disease (PD) is a complex neurodegenerative disorder, affecting 2%–3% of the elderly population. Montreal Cognitive Assessment (MoCA), a rapid nonmotor screening test, assesses different cognitive dysfunctionality aspects. Early MoCA prediction may facilitate better temporal therapy and disease control. Radiomics features (RF), in addition to clinical features (CF), are indicated to increase clinical diagnoses, etc, bridging between medical imaging procedures and personalized medicine. We investigate the effect of RFs, CFs, and conventional imaging features (CIF) to enhance prediction performance using hybrid machine learning systems (HMLS). Methods. We selected 210 patients with 981 features (CFs, CIFs, and RFs) from the Parkinson’s Progression-Markers-Initiative database. We generated 4 datasets, namely using (i), (ii) year-0 (D1) or year-1 (D2) features, (iii) longitudinal data (D3, putting datasets in years 0 and 1 longitudinally next to each other), and (iv) timeless data (D4, effectively doubling dataset size by listing both datasets from years 0 and 1 separately). First, we directly applied 23 predictor algorithms (PA) to the datasets to predict year-4 MoCA, which PD patients this year have a higher dementia risk. Subsequently, HMLSs, including 14 attribute extraction and 10 feature selection algorithms followed by PAs were employed to enhance prediction performances. 80% of all datapoints were utilized to select the best model based on minimum mean absolute error (MAE) resulting from 5-fold cross-validation. Subsequently, the remaining 20% was used for hold-out testing of the selected models. Results. When applying PAs without ASAs/FEAs to datasets (MoCA outcome range: [11,30]), Adaboost achieved an MAE of 1.74 ± 0.29 on D4 with a hold-out testing performance of 1.71. When employing HMLSs, D4 + Minimum_Redundancy_Maximum_Relevance (MRMR)+K_Nearest_Neighbor Regressor achieved the highest performance of 1.05 ± 0.25 with a hold-out testing performance of 0.57. Conclusion. Our study shows the importance of using larger datasets (timeless), and utilizing optimized HMLSs, for significantly improved prediction of MoCA in PD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡皮巴拉发布了新的文献求助10
刚刚
sundaytan完成签到,获得积分10
1秒前
shuaishuyi完成签到,获得积分10
1秒前
李爱国应助123采纳,获得10
2秒前
luckyshao发布了新的文献求助10
2秒前
隐形的苑睐完成签到,获得积分10
2秒前
强小蝶关注了科研通微信公众号
3秒前
3秒前
laber应助Steven采纳,获得50
3秒前
清脆的新柔完成签到,获得积分10
3秒前
3秒前
纷雪发布了新的文献求助10
5秒前
CodeCraft应助风趣的鸭子采纳,获得10
5秒前
5秒前
7秒前
无尽夏完成签到,获得积分10
7秒前
7秒前
zhaomr完成签到,获得积分10
7秒前
fan完成签到 ,获得积分10
7秒前
lixuanhao完成签到,获得积分10
8秒前
9秒前
共享精神应助赵博宇采纳,获得10
9秒前
愤怒的访卉完成签到 ,获得积分10
10秒前
和和发布了新的文献求助10
10秒前
香蕉觅云应助momm852采纳,获得10
11秒前
孟双发布了新的文献求助10
12秒前
冒险寻羊完成签到,获得积分10
12秒前
卡皮巴拉完成签到,获得积分10
12秒前
miaoww完成签到,获得积分10
13秒前
孤独寻云发布了新的文献求助30
13秒前
luckyshao完成签到,获得积分20
13秒前
14秒前
14秒前
15秒前
Majiko完成签到,获得积分10
15秒前
易安发布了新的文献求助10
16秒前
17秒前
咕噜噜完成签到,获得积分10
17秒前
18秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971091
求助须知:如何正确求助?哪些是违规求助? 3515797
关于积分的说明 11179488
捐赠科研通 3250872
什么是DOI,文献DOI怎么找? 1795536
邀请新用户注册赠送积分活动 875891
科研通“疑难数据库(出版商)”最低求助积分说明 805207