已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of novel hybrid machine learning systems and radiomics features for non-motor outcome prediction in Parkinson’s disease

蒙特利尔认知评估 人工智能 机器学习 特征选择 计算机科学 痴呆 桥接(联网) 多元统计 人口 疾病 医学诊断 医学 内科学 病理 计算机网络 环境卫生
作者
Mohammad R. Salmanpour,Mahya Bakhtiyari,Mahdi Hosseinzadeh,Mehdi Maghsudi,Fereshteh Yousefirizi,Mohammad Mehdi Ghaemi,Arman Rahmim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (3): 035004-035004 被引量:4
标识
DOI:10.1088/1361-6560/acaba6
摘要

Abstract Objectives. Parkinson’s disease (PD) is a complex neurodegenerative disorder, affecting 2%–3% of the elderly population. Montreal Cognitive Assessment (MoCA), a rapid nonmotor screening test, assesses different cognitive dysfunctionality aspects. Early MoCA prediction may facilitate better temporal therapy and disease control. Radiomics features (RF), in addition to clinical features (CF), are indicated to increase clinical diagnoses, etc, bridging between medical imaging procedures and personalized medicine. We investigate the effect of RFs, CFs, and conventional imaging features (CIF) to enhance prediction performance using hybrid machine learning systems (HMLS). Methods. We selected 210 patients with 981 features (CFs, CIFs, and RFs) from the Parkinson’s Progression-Markers-Initiative database. We generated 4 datasets, namely using (i), (ii) year-0 (D1) or year-1 (D2) features, (iii) longitudinal data (D3, putting datasets in years 0 and 1 longitudinally next to each other), and (iv) timeless data (D4, effectively doubling dataset size by listing both datasets from years 0 and 1 separately). First, we directly applied 23 predictor algorithms (PA) to the datasets to predict year-4 MoCA, which PD patients this year have a higher dementia risk. Subsequently, HMLSs, including 14 attribute extraction and 10 feature selection algorithms followed by PAs were employed to enhance prediction performances. 80% of all datapoints were utilized to select the best model based on minimum mean absolute error (MAE) resulting from 5-fold cross-validation. Subsequently, the remaining 20% was used for hold-out testing of the selected models. Results. When applying PAs without ASAs/FEAs to datasets (MoCA outcome range: [11,30]), Adaboost achieved an MAE of 1.74 ± 0.29 on D4 with a hold-out testing performance of 1.71. When employing HMLSs, D4 + Minimum_Redundancy_Maximum_Relevance (MRMR)+K_Nearest_Neighbor Regressor achieved the highest performance of 1.05 ± 0.25 with a hold-out testing performance of 0.57. Conclusion. Our study shows the importance of using larger datasets (timeless), and utilizing optimized HMLSs, for significantly improved prediction of MoCA in PD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
香菜张完成签到,获得积分10
3秒前
3秒前
8秒前
10秒前
小蘑菇应助橙子采纳,获得10
12秒前
12秒前
12秒前
碧蓝白玉完成签到,获得积分20
13秒前
家人们救救我完成签到 ,获得积分10
13秒前
想不出来完成签到 ,获得积分10
13秒前
核桃应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
14秒前
大个应助科研通管家采纳,获得10
14秒前
洛希发布了新的文献求助10
15秒前
刘辰完成签到 ,获得积分10
15秒前
d22110652发布了新的文献求助10
16秒前
碧蓝白玉发布了新的文献求助10
17秒前
Percy完成签到 ,获得积分10
21秒前
黎泱完成签到 ,获得积分10
22秒前
成天完成签到 ,获得积分10
22秒前
leave完成签到 ,获得积分0
22秒前
23秒前
小艺完成签到,获得积分10
25秒前
pandon2002完成签到,获得积分10
26秒前
changping应助碧蓝白玉采纳,获得10
26秒前
橙子发布了新的文献求助10
28秒前
情怀应助南枝采纳,获得10
30秒前
31秒前
是氓呀发布了新的文献求助10
34秒前
闪光的flash完成签到 ,获得积分10
36秒前
橙子完成签到,获得积分10
37秒前
40秒前
FashionBoy应助zizideng采纳,获得10
41秒前
42秒前
42秒前
程住气完成签到 ,获得积分10
43秒前
橙橙完成签到,获得积分10
44秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063374
求助须知:如何正确求助?哪些是违规求助? 4286981
关于积分的说明 13358202
捐赠科研通 4104985
什么是DOI,文献DOI怎么找? 2247755
邀请新用户注册赠送积分活动 1253289
关于科研通互助平台的介绍 1184323