Application of novel hybrid machine learning systems and radiomics features for non-motor outcome prediction in Parkinson’s disease

蒙特利尔认知评估 人工智能 机器学习 特征选择 计算机科学 痴呆 桥接(联网) 多元统计 人口 疾病 医学诊断 医学 内科学 病理 计算机网络 环境卫生
作者
Mohammad R. Salmanpour,Mahya Bakhtiyari,Mahdi Hosseinzadeh,Mehdi Maghsudi,Fereshteh Yousefirizi,Mohammad Mehdi Ghaemi,Arman Rahmim
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (3): 035004-035004 被引量:4
标识
DOI:10.1088/1361-6560/acaba6
摘要

Abstract Objectives. Parkinson’s disease (PD) is a complex neurodegenerative disorder, affecting 2%–3% of the elderly population. Montreal Cognitive Assessment (MoCA), a rapid nonmotor screening test, assesses different cognitive dysfunctionality aspects. Early MoCA prediction may facilitate better temporal therapy and disease control. Radiomics features (RF), in addition to clinical features (CF), are indicated to increase clinical diagnoses, etc, bridging between medical imaging procedures and personalized medicine. We investigate the effect of RFs, CFs, and conventional imaging features (CIF) to enhance prediction performance using hybrid machine learning systems (HMLS). Methods. We selected 210 patients with 981 features (CFs, CIFs, and RFs) from the Parkinson’s Progression-Markers-Initiative database. We generated 4 datasets, namely using (i), (ii) year-0 (D1) or year-1 (D2) features, (iii) longitudinal data (D3, putting datasets in years 0 and 1 longitudinally next to each other), and (iv) timeless data (D4, effectively doubling dataset size by listing both datasets from years 0 and 1 separately). First, we directly applied 23 predictor algorithms (PA) to the datasets to predict year-4 MoCA, which PD patients this year have a higher dementia risk. Subsequently, HMLSs, including 14 attribute extraction and 10 feature selection algorithms followed by PAs were employed to enhance prediction performances. 80% of all datapoints were utilized to select the best model based on minimum mean absolute error (MAE) resulting from 5-fold cross-validation. Subsequently, the remaining 20% was used for hold-out testing of the selected models. Results. When applying PAs without ASAs/FEAs to datasets (MoCA outcome range: [11,30]), Adaboost achieved an MAE of 1.74 ± 0.29 on D4 with a hold-out testing performance of 1.71. When employing HMLSs, D4 + Minimum_Redundancy_Maximum_Relevance (MRMR)+K_Nearest_Neighbor Regressor achieved the highest performance of 1.05 ± 0.25 with a hold-out testing performance of 0.57. Conclusion. Our study shows the importance of using larger datasets (timeless), and utilizing optimized HMLSs, for significantly improved prediction of MoCA in PD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
123完成签到,获得积分10
1秒前
不扯先生完成签到,获得积分10
2秒前
柳絮完成签到,获得积分20
3秒前
lll完成签到,获得积分10
3秒前
sdl完成签到,获得积分10
3秒前
Orange应助孟婆的碗采纳,获得10
4秒前
zhangmy1989发布了新的文献求助30
4秒前
4秒前
清秀的不言完成签到 ,获得积分10
4秒前
杂化轨道退役研究员完成签到,获得积分10
4秒前
FashionBoy应助tanglu采纳,获得10
5秒前
6秒前
闪闪如南完成签到,获得积分10
7秒前
wjxcl完成签到,获得积分10
8秒前
8秒前
8秒前
12233完成签到,获得积分10
9秒前
9秒前
洪武完成签到,获得积分20
9秒前
10秒前
Yuantian发布了新的文献求助10
11秒前
传奇3应助浪花淘尽英雄采纳,获得10
12秒前
流川枫完成签到,获得积分10
12秒前
赘婿应助leo采纳,获得10
12秒前
追寻夏烟完成签到 ,获得积分10
13秒前
闪闪寒云完成签到 ,获得积分10
13秒前
13633501455完成签到 ,获得积分10
14秒前
阿里完成签到,获得积分10
14秒前
蓁蓁发布了新的文献求助10
15秒前
科研通AI5应助加百莉采纳,获得10
15秒前
WELXCNK完成签到,获得积分10
16秒前
GG波波完成签到,获得积分10
17秒前
susu完成签到 ,获得积分10
17秒前
18秒前
18秒前
海阔天空发布了新的文献求助10
19秒前
Loooong发布了新的文献求助10
20秒前
云影箫羽完成签到 ,获得积分10
21秒前
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048