PSDC: A Prototype-Based Shared-Dummy Classifier Model for Open-Set Domain Adaptation

分类器(UML) 判别式 域适应 计算机科学 范畴变量 人工智能 源代码 机器学习 学习迁移 模式识别(心理学) 数据挖掘 操作系统
作者
Zhengfa Liu,Guang Chen,Zhijun Li,Yu Kang,Sanqing Qu,Changjun Jiang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 7353-7366 被引量:4
标识
DOI:10.1109/tcyb.2022.3228301
摘要

Open-set domain adaptation (OSDA) aims to achieve knowledge transfer in the presence of both domain shift and label shift, which assumes that there exist additional unknown target classes not presented in the source domain. To solve the OSDA problem, most existing methods introduce an additional unknown class to the source classifier and represent the unknown target instances as a whole. However, it is unreasonable to treat all unknown target instances as a group since these unknown instances typically consist of distinct categories and distributions. It is challenging to identify all unknown instances with only one additional class. In addition, most existing methods directly introduce marginal distribution alignment to alleviate distribution shift between the source and target domains, failing to learn discriminative class boundaries in the target domain since they ignore categorical discriminative information in the adaptation. To address these problems, in this article, we propose a novel prototype-based shared-dummy classifier (PSDC) model for the OSDA. Specifically, our PSDC introduces an auxiliary dummy classifier to calibrate the source classifier and simultaneously develops a weighted adaptation procedure to align class-wise prototypes for adaptation. We further design a pseudo-unknown learning algorithm to reduce the open-set risk. Extensive experiments on Office-31, Office-Home, and VisDA datasets show that the proposed PSDC can outperform existing methods and achieve the new state-of-the-art performance. The code will be made public.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助迅速的仰采纳,获得10
刚刚
科研通AI6应助张张采纳,获得10
刚刚
1秒前
1秒前
summer夏完成签到,获得积分10
1秒前
伊伊发布了新的文献求助10
3秒前
谦让靖儿发布了新的文献求助10
4秒前
4秒前
4秒前
愤怒的鹰完成签到,获得积分20
4秒前
5秒前
慕青应助晚生采纳,获得10
6秒前
领导范儿应助沉静水儿采纳,获得10
6秒前
科研通AI6应助mucheng采纳,获得10
6秒前
6秒前
7秒前
三月完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
FGGFGGU发布了新的文献求助10
9秒前
脑洞疼应助shiqi采纳,获得10
9秒前
xx关注了科研通微信公众号
11秒前
yyy完成签到,获得积分10
13秒前
小乖完成签到,获得积分10
13秒前
星星完成签到,获得积分10
13秒前
13秒前
13秒前
tantan完成签到,获得积分10
13秒前
14秒前
三月发布了新的文献求助10
14秒前
14秒前
NexusExplorer应助伊伊采纳,获得10
15秒前
asdfzxcv应助迷路的派派采纳,获得10
15秒前
晚生完成签到,获得积分10
16秒前
一心只想拿核心完成签到,获得积分10
16秒前
16秒前
wuwa完成签到,获得积分10
17秒前
yuzu完成签到 ,获得积分10
18秒前
苗苗完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642882
求助须知:如何正确求助?哪些是违规求助? 4760127
关于积分的说明 15019330
捐赠科研通 4801400
什么是DOI,文献DOI怎么找? 2566683
邀请新用户注册赠送积分活动 1524598
关于科研通互助平台的介绍 1484211