PSDC: A Prototype-Based Shared-Dummy Classifier Model for Open-Set Domain Adaptation

分类器(UML) 判别式 域适应 计算机科学 范畴变量 人工智能 源代码 机器学习 学习迁移 模式识别(心理学) 数据挖掘 操作系统
作者
Zhengfa Liu,Guang Chen,Zhijun Li,Yu Kang,Sanqing Qu,Changjun Jiang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (11): 7353-7366 被引量:4
标识
DOI:10.1109/tcyb.2022.3228301
摘要

Open-set domain adaptation (OSDA) aims to achieve knowledge transfer in the presence of both domain shift and label shift, which assumes that there exist additional unknown target classes not presented in the source domain. To solve the OSDA problem, most existing methods introduce an additional unknown class to the source classifier and represent the unknown target instances as a whole. However, it is unreasonable to treat all unknown target instances as a group since these unknown instances typically consist of distinct categories and distributions. It is challenging to identify all unknown instances with only one additional class. In addition, most existing methods directly introduce marginal distribution alignment to alleviate distribution shift between the source and target domains, failing to learn discriminative class boundaries in the target domain since they ignore categorical discriminative information in the adaptation. To address these problems, in this article, we propose a novel prototype-based shared-dummy classifier (PSDC) model for the OSDA. Specifically, our PSDC introduces an auxiliary dummy classifier to calibrate the source classifier and simultaneously develops a weighted adaptation procedure to align class-wise prototypes for adaptation. We further design a pseudo-unknown learning algorithm to reduce the open-set risk. Extensive experiments on Office-31, Office-Home, and VisDA datasets show that the proposed PSDC can outperform existing methods and achieve the new state-of-the-art performance. The code will be made public.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哄哄应助稳重的孤兰采纳,获得10
刚刚
刚刚
galaxy发布了新的文献求助10
1秒前
1秒前
火星上的糖豆完成签到,获得积分10
1秒前
1秒前
满满完成签到,获得积分20
1秒前
脑洞疼应助OO采纳,获得10
2秒前
jennie完成签到 ,获得积分10
3秒前
顾矜应助lee采纳,获得10
3秒前
Noel完成签到,获得积分10
4秒前
猪猪hero发布了新的文献求助10
4秒前
輓楓完成签到,获得积分10
5秒前
易昕发布了新的文献求助10
5秒前
Ava应助fufu采纳,获得10
6秒前
姚懿磊发布了新的文献求助10
6秒前
7秒前
米糊发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
填充物完成签到 ,获得积分10
11秒前
12秒前
抹茶泡泡完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
虫它完成签到,获得积分10
15秒前
爆米花应助dongbei采纳,获得10
15秒前
茜茜哎科研应助是希希啊a采纳,获得10
16秒前
感动清炎完成签到,获得积分10
16秒前
16秒前
佳哥闯天下完成签到,获得积分20
16秒前
17秒前
17秒前
lee发布了新的文献求助10
17秒前
18秒前
18秒前
Panda尧完成签到,获得积分10
18秒前
SciGPT应助啊汪~采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095